98%
921
2 minutes
20
Quantitative approaches are needed to complement qualitative explorations to identify sites with unique geodiversity and thereby guide geoconservation and geoheritage programmes. Here, we introduce the concept and associated index of 'geodiversity uniqueness'. This index is based on a numerical analysis of geofeatures and allows the identification of sites with unique geodiversity in a study area. We applied this approach to geofeature data from three areas in Finland. Our results showed that patterns of geodiversity uniqueness varied profoundly among the three study areas and across sites within each area. This was due to different sets of geofeatures and distinct characteristics of each study area. More importantly, the approach presented here was robust across the datasets and selection criteria for sets of sites, showing potential for geoconservation in each study area. The geodiversity uniqueness approach is a promising starting point to identify and map sites with unique geodiversity that can be further verified using field observations. To improve our knowledge of geodiversity variation, complementary approaches providing objective information on contributions to total beta geodiversity are needed to advance geoconservation programmes across areas and different spatial scales. This article is part of the Theo Murphy meeting issue 'Geodiversity for science and society'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2023.0056 | DOI Listing |
Philos Trans A Math Phys Eng Sci
April 2024
Geography Research Unit, University of Oulu, Pentti Kaiteran Katu 1, 90570 Oulu, Finland.
Quantitative approaches are needed to complement qualitative explorations to identify sites with unique geodiversity and thereby guide geoconservation and geoheritage programmes. Here, we introduce the concept and associated index of 'geodiversity uniqueness'. This index is based on a numerical analysis of geofeatures and allows the identification of sites with unique geodiversity in a study area.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
February 2021
Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France.
Tropical Africa is home to an astonishing biodiversity occurring in a variety of ecosystems. Past climatic change and geological events have impacted the evolution and diversification of this biodiversity. During the last two decades, around 90 dated molecular phylogenies of different clades across animals and plants have been published leading to an increased understanding of the diversification and speciation processes generating tropical African biodiversity.
View Article and Find Full Text PDFPLoS One
September 2017
Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States of America.
Among the greatest challenges facing the conservation of plants and animal species in protected areas are threats from a rapidly changing climate. An altered climate creates both challenges and opportunities for improving the management of protected areas in networks. Increasingly, quantitative tools like species distribution modeling are used to assess the performance of protected areas and predict potential responses to changing climates for groups of species, within a predictive framework.
View Article and Find Full Text PDFConserv Biol
June 2015
Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME, 04469, U.S.A.
Geodiversity--the variability of Earth's surface materials, forms, and physical processes-is an integral part of nature and crucial for sustaining ecosystems and their services. It provides the substrates, landform mosaics, and dynamic physical processes for habitat development and maintenance. By determining the heterogeneity of the physical environment in conjunction with climate interactions, geodiversity has a crucial influence on biodiversity across a wide range of scales.
View Article and Find Full Text PDF