JACC Basic Transl Sci
July 2025
Amino acid imbalance is linked to increased congenital heart disease risk. Here, we found women carrying rs2545801 C/C genotypes exhibited increased glycine levels and increased risk for atrial septal defects (ASDs) in their offspring. Elevated maternal glycine levels during the first trimester were correlated with a higher ASD risk in the offspring.
View Article and Find Full Text PDFEsophageal cancer is one of the most common cancers and a leading cause of cancer-related mortality in the world. Here, we have performed comprehensive characterization of genetic, transcriptomic, proteomic, and phosphoproteomic features in 293 patients with esophageal squamous cell carcinoma (ESCC). Chromosome 12q13.
View Article and Find Full Text PDFJACC Basic Transl Sci
May 2025
Cardiovascular disease risk is elevated in patients with cirrhosis. However, the underlying molecular mechanisms remain poorly understood. Herein, we found that high levels of circulating transforming growth factor (TGF)-β1 were associated with an increased risk of cardiomyopathy in cirrhosis patients.
View Article and Find Full Text PDFBackground And Aims: Metals serve as co-factors for a host of metalloenzymes involved in mitochondrial metabolic reprogramming. Modifications in metal homeostasis are linked to epigenetic mechanisms. However, the epigenetic mechanisms through which metal affects cardiac fibrosis (CF) remain poorly understood.
View Article and Find Full Text PDFFree Radic Biol Med
February 2025
Mitochondria, commonly referred to as "energy factories"of cells, play a crucial role in the function and survival of cardiomyocytes. However, as research on cardiac fibrosis has advanced, mitochondrial dysfunction(including changes in energy metabolism, calcium ion imbalance, increased oxidative stress, and apoptosis)is now recognized as a significant pathophysiological pathway involved in cardiac remodeling and progression, which also negatively affects the function and structure of the heart. In recent years, research focusing on targeting mitochondria has gained significant attention, offering new approaches for treating cardiac fibrosis.
View Article and Find Full Text PDFMore than half of the patients with type II diabetes mellitus (T2D) develop diabetic cardiomyopathy (DCM). Glycemic control alone cannot effectively prevent or alleviate DCM. Herein, we concentrated on the variations in levels of metabolites between DCM and T2D patients without cardiomyopathy phenotype.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
In the process of cardiac fibrosis, the balance between the Wnt/β-catenin signalling pathway and Wnt inhibitory factor genes plays an important role. Secreted frizzled-related protein 3 (sFRP3), a Wnt inhibitory factor, has been linked to epigenetic mechanisms. However, the underlying role of epigenetic regulation of sFRP3, which is crucial in fibroblast proliferation and migration, in cardiac fibrosis have not been elucidated.
View Article and Find Full Text PDFUnlabelled: Increasing evidence indicates that Calumenin (CALU), which is localized in the endoplasmic reticulum, is significantly associated with tumor progression. However, the effect of CALU on patients with clear cell renal cell carcinoma (ccRCC) is unknown. By integrating multi-omics data and molecular biology experiments, we found that CALU expression was significantly increased in tumors compared with normal tissues, and the pathological grade and prognosis of patients were correlated with CALU expression.
View Article and Find Full Text PDFNotch signaling activation drives an endothelial-to-mesenchymal transition (EndMT) critical for heart development, although evidence suggests that the reprogramming of endothelial cell metabolism can regulate endothelial function independent of canonical cell signaling. Herein, we investigated the crosstalk between Notch signaling and metabolic reprogramming in the EndMT process. Biochemically, we find that the NOTCH1 intracellular domain (NICD1) localizes to endothelial cell mitochondria, where it interacts with and activates the complex to enhance mitochondrial metabolism.
View Article and Find Full Text PDFBiomed Pharmacother
December 2024
Cardiovasc Res
December 2024
Trends Pharmacol Sci
October 2023
N6-methyladenosine (m6A) modifications are modulated by m6A methyltransferases, m6A demethylases, and m6A-binding proteins. The dynamic and reversible patterns of m6A modification control cell fate programming by regulating RNA splicing, translation, and decay. Emerging evidence demonstrates that m6A modification of coding and noncoding RNAs exerts crucial effects that influence the pathogenesis of diabetic microvascular complications that include diabetic cardiomyopathy, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic dermatosis.
View Article and Find Full Text PDFCardiovasc Diabetol
September 2024
Cardiovasc Res
December 2024
Adv Sci (Weinh)
October 2024
Mortality rates due to lung cancer are high worldwide. Although PD-1 and PD-L1 immune checkpoint inhibitors boost the survival of patients with non-small-cell lung cancer (NSCLC), resistance often arises. The Warburg Effect, which causes lactate build-up and potential lysine-lactylation (Kla), links immune dysfunction to tumor metabolism.
View Article and Find Full Text PDFInt Immunopharmacol
June 2024
Cardiovascular disease is currently the number one cause of death endangering human health. There is currently a large body of research showing that the development of cardiovascular disease and its complications is often accompanied by inflammatory processes. In recent years, epitranscriptional modifications have been shown to be involved in regulating the pathophysiological development of inflammation in cardiovascular diseases, with 6-methyladenine being one of the most common RNA transcriptional modifications.
View Article and Find Full Text PDFCardiac fibrosis is a major public health problem worldwide, with high morbidity and mortality, affecting almost all patients with heart disease worldwide. It is characterized by fibroblast activation, abnormal proliferation, excessive deposition, and abnormal distribution of extracellular matrix (ECM) proteins. The maladaptive process of cardiac fibrosis is complex and often involves multiple mechanisms.
View Article and Find Full Text PDFKetogenic diet (KD) alleviates refractory epilepsy and reduces seizures in children. However, the metabolic/cell biologic mechanisms by which the KD exerts its antiepileptic efficacy remain elusive. Herein, we report that KD-produced β-hydroxybutyric acid (BHB) augments brain gamma-aminobutyric acid (GABA) and the GABA/glutamate ratio to inhibit epilepsy.
View Article and Find Full Text PDFCardiac fibrosis is a critical pathophysiological process that occurs with diverse types of cardiac injury. Lipids are the most important bioenergy substrates for maintaining optimal heart performance and act as second messengers to transduce signals within cardiac cells. However, lipid metabolism reprogramming is a double-edged sword in the regulation of cardiomyocyte homeostasis and heart function.
View Article and Find Full Text PDFInt J Biol Macromol
January 2024
Cardiac fibroblasts play a pivotal role in cardiac fibrosis by transformation of fibroblasts into myofibroblasts, which synthesis and secrete a large number of extracellular matrix proteins. Ultimately, this will lead to cardiac wall stiffness and impaired cardiac performance. The epigenetic regulation and fate reprogramming of cardiac fibroblasts has been advanced considerably in recent decades.
View Article and Find Full Text PDF