Publications by authors named "James W Head"

The thermal mechanism that drives the prolonged volcanism on the Moon, especially after the major pulse of Imbrian-aged eruptions, remains unknown. Here, we present a petrological and geochemical study of two types of young farside mare basalts, the ~2.8-billion year (Ga) low-Ti and ~2.

View Article and Find Full Text PDF

Remote sensing observations have shown that the far side of the Moon (lunar farside) has different geology and rock composition to those of the nearside, including the abundances of potassium, rare earth elements, and phosphorus (collectively known as KREEP). The Chang'e-6 (CE-6) spacecraft collected samples from the South Pole-Aitken (SPA) basin on the farside and brought them to Earth. We used lead-lead and rubidium-strontium isotope systems to date low-titanium basalt in a CE-6 sample, finding a consistent age of 2830 (±5) million years.

View Article and Find Full Text PDF

Water ice and other volatiles that accumulated in the Moon's polar regions are among the top priority targets for lunar exploration, due to their significances in both lunar geology and extraterrestrial resource utilization. Locating suitable landing sites and determining the provenance of sampled/measured surface materials are critical for future landed missions. Here, we map over 800 sites of plains terrains in the Moon's south polar region, with a total surface area of ~46,000 km.

View Article and Find Full Text PDF
Article Synopsis
  • Research over decades using satellite data suggests that there may have been an ocean in the northern lowlands of Mars during the Hesperian period (around 3.3 billion years ago), but this idea has faced skepticism due to insufficient study of the Vastitas Borealis Formation (VBF).
  • The Tianwen-1/Zhurong rover was sent to explore the VBF, landing near its southern edge and traveling almost 2 km towards what could be the shoreline of this ancient ocean.
  • Detailed analysis of the VBF has uncovered sedimentary features in surface rocks that strongly indicate the area was formed in a marine environment, lending credible evidence to the theory of a former ocean on Mars.
View Article and Find Full Text PDF

Orbital observations suggest that Mars underwent a recent 'ice age' (roughly 0.4-2.1 million years ago), during which a latitude-dependent ice-dust mantle (LDM) was emplaced.

View Article and Find Full Text PDF

Granites are nearly absent in the Solar System outside of Earth. Achieving granitic compositions in magmatic systems requires multi-stage melting and fractionation, which also increases the concentration of radiogenic elements. Abundant water and plate tectonics facilitate these processes on Earth, aiding in remelting.

View Article and Find Full Text PDF

Impact glasses found in lunar soils provide a possible window into the impact history of the inner solar system. However, their use for precise reconstruction of this history is limited by an incomplete understanding of the physical mechanisms responsible for their origin and distribution and possible relationships to local and regional geology. Here, we report U-Pb isotopic dates and chemical compositions of impact glasses from the Chang'e-5 soil and quantitative models of impact melt formation and ejection that account for the compositions of these glasses.

View Article and Find Full Text PDF

We present a case for the exploration of Venus as an astrobiology target-(1) investigations focused on the likelihood that liquid water existed on the surface in the past, leading to the potential for the origin and evolution of life, (2) investigations into the potential for habitable zones within Venus' present-day clouds and Venus-like exo atmospheres, (3) theoretical investigations into how active aerobiology may impact the radiative energy balance of Venus' clouds and Venus-like atmospheres, and (4) application of these investigative approaches toward better understanding the atmospheric dynamics and habitability of exoplanets. The proximity of Venus to Earth, guidance for exoplanet habitability investigations, and access to the potential cloud habitable layer and surface for prolonged extended measurements together make the planet a very attractive target for near term astrobiological exploration.

View Article and Find Full Text PDF

Advances in origins of life research and prebiotic chemistry suggest that life as we know it may have emerged from an earlier RNA World. However, it has been difficult to reconcile the conditions used in laboratory experiments with real-world geochemical environments that may have existed on the early Earth and hosted the origin(s) of life. This challenge is due to geologic resurfacing and recycling that have erased the overwhelming majority of the Earth's prebiotic history.

View Article and Find Full Text PDF

This report summarizes observations of returned Apollo rocks and soils, lunar surface images, orbital observations, and experimental impacts related to the erosion and comminution of rocks exposed at the lunar surface. The objective is to develop rigorous criteria for the recognition of impact processes that assist in distinguishing "impact" from other potential erosional processes, particularly thermal fatigue, which has recently been advocated specifically for asteroids. Impact in rock is a process that is centrally to bilaterally symmetric, resulting in highly crushed, high-albedo, quasicircular depressions surrounded by volumetrically prominent spall zones.

View Article and Find Full Text PDF

Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter (~90-190 km) and gravitational amplitude (>140 mGal contrast) are identified within the central Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic complex (north and south). Each is characterized by distinct surface geologic features suggestive of ancient impact craters and/or volcanic/plutonic activity.

View Article and Find Full Text PDF

Surface ice at the poles of Mercury appears as several-m-thick deposits that are composed of nearly pure water. We provide new age estimates of Mercury's polar deposits from combined analyses of Poisson statistics and direct observations of crater densities within permanently shadowed, radar-bright regions imaged by the MESSENGER spacecraft. These age estimates suggest that ice was delivered to Mercury within the last ~150 Myr.

View Article and Find Full Text PDF

Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity.

View Article and Find Full Text PDF

The Orientale basin is the youngest and best-preserved multiring impact basin on the Moon, having experienced only modest modification by subsequent impacts and volcanism. Orientale is often treated as the type example of a multiring basin, with three prominent rings outside of the inner depression: the Inner Rook Montes, the Outer Rook Montes, and the Cordillera. Here we use gravity data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission to reveal the subsurface structure of Orientale and its ring system.

View Article and Find Full Text PDF

Images obtained during MESSENGER's low-altitude campaign in the final year of the mission provide the highest-spatial-resolution views of Mercury's polar deposits. Images for distinct areas of permanent shadow within 35 north polar craters were successfully captured during the campaign. All of these regions of permanent shadow were found to have low-reflectance surfaces with well-defined boundaries.

View Article and Find Full Text PDF

Multiring basins, large impact craters characterized by multiple concentric topographic rings, dominate the stratigraphy, tectonics, and crustal structure of the Moon. Using a hydrocode, we simulated the formation of the Orientale multiring basin, producing a subsurface structure consistent with high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft. The simulated impact produced a transient crater, ~390 kilometers in diameter, that was not maintained because of subsequent gravitational collapse.

View Article and Find Full Text PDF

The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.

View Article and Find Full Text PDF

Earth-based radar observations and results from the MESSENGER mission have provided strong evidence that permanently shadowed regions near Mercury's poles host deposits of water ice. MESSENGER's complete orbital image and topographic datasets enable Mercury's surface to be observed and modeled under an extensive range of illumination conditions. The shadowed regions of Mercury's north polar region from 65°N to 90°N were mapped by analyzing Mercury Dual Imaging System (MDIS) images and by modeling illumination with Mercury Laser Altimeter (MLA) topographic data.

View Article and Find Full Text PDF

Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest.

View Article and Find Full Text PDF

Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.

View Article and Find Full Text PDF

A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team.

View Article and Find Full Text PDF

The Procellarum region is a broad area on the nearside of the Moon that is characterized by low elevations, thin crust, and high surface concentrations of the heat-producing elements uranium, thorium, and potassium. The region has been interpreted as an ancient impact basin approximately 3,200 kilometres in diameter, although supporting evidence at the surface would have been largely obscured as a result of the great antiquity and poor preservation of any diagnostic features. Here we use data from the Gravity Recovery and Interior Laboratory (GRAIL) mission to examine the subsurface structure of Procellarum.

View Article and Find Full Text PDF

Thermokarst is a land surface lowered and disrupted by melting ground ice. Thermokarst is a major driver of landscape change in the Arctic, but has been considered to be a minor process in Antarctica. Here, we use ground-based and airborne LiDAR coupled with timelapse imaging and meteorological data to show that 1) thermokarst formation has accelerated in Garwood Valley, Antarctica; 2) the rate of thermokarst erosion is presently ~ 10 times the average Holocene rate; and 3) the increased rate of thermokarst formation is driven most strongly by increasing insolation and sediment/albedo feedbacks.

View Article and Find Full Text PDF

The most heavily cratered terrains on Mercury have been estimated to be about 4 billion years (Gyr) old, but this was based on images of only about 45 per cent of the surface; even older regions could have existed in the unobserved portion. These terrains have a lower density of craters less than 100 km in diameter than does the Moon, an observation attributed to preferential resurfacing on Mercury. Here we report global crater statistics of Mercury's most heavily cratered terrains on the entire surface.

View Article and Find Full Text PDF