98%
921
2 minutes
20
Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity. Candidate origins include pyroclastic rocks, impact-generated materials, or detrital sedimentary rocks. Olivine/pyroxene enrichments in bedrock plains relative to surrounding materials could have potentially formed through deflation and preferential removal of plagioclase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6310033 | PMC |
http://dx.doi.org/10.1002/2018GL077030 | DOI Listing |
The Martian highlands contain Noachian-aged areally-extensive (>225 km) bedrock exposures that have been mapped using thermal and visible imaging datasets. Given their age, crater density and impact gardening should have led to the formation of decameter scale layers of regolith that would overlie and bury these outcrops if composed of competent materials like basaltic lavas. However, many of these regions lack thick regolith layers and show clear exposures of bedrock materials with elevated thermal inertia values compared to the global average.
View Article and Find Full Text PDFInterpretation of radar sounder reflections to infer the structure and composition of the martian polar caps depends on whether bright returns correspond to single packed dust layers or a more finely layered structure. Reflections from multiple layers can create strong resonant scattering (interference) effects that impact analyses of radargram reflectors and inference of dielectric contrast. We identify resonant behavior for an areally extensive reflector in the north polar layered deposits from Shallow Radar data processed in two frequency bands.
View Article and Find Full Text PDFGeophys Res Lett
February 2018
Department of Geosciences, Stony Brook University, Stony Brook, NY, USA.
Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity.
View Article and Find Full Text PDFEnviron Sci Technol
October 2010
Department of Earth Sciences, The University of Hong Kong, Hong Kong, PR China.
High-nitrogen loadings of rivers and aquifers systems are a major concern because of potential effects on human health and water quality impacts such as eutrophication of lakes and coastal zones. This nitrogen enrichment is commonly attributed to anthropogenic sources such as sewage and agricultural and industrial wastes. The aims of this study were to delineate spatial distribution of groundwater ammonium in the coastal aquifer system in Pearl River Delta (PRD), China and to identify the origin of the abnormally high ammonium.
View Article and Find Full Text PDFGeobiology
January 2009
Department of Earth Sciences, 140 Louis Pasteur, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.
Sediment samples were obtained from areas of diffuse hydrothermal venting along the seabed in the Tonga sector of the Tonga-Kermadec Arc, southwest Pacific Ocean. Sediments from Volcano 1 and Volcano 19 were analyzed by X-ray diffraction (XRD) and found to be composed primarily of the iron oxyhydroxide mineral, two-line ferrihydrite. XRD also suggested the possible presence of minor amounts of more ordered iron (hydr)oxides (including six-line ferrihydrite, goethite/lepidocrocite and magnetite) in the biogenic iron oxides (BIOS) from Volcano 1; however, Mössbauer spectroscopy failed to detect any mineral phases more crystalline than two-line ferrihydrite.
View Article and Find Full Text PDF