Pressure has been considered as a versatile and promising means in the discovery of metal superhydrides. However, although a series of metastable metal hydrides with excellent superconducting properties have been predicted through theoretical calculations, it is still challenging to obtain metal hydrides with metastable phases via a high-pressure synthetic route. Herein, we have successfully fabricated a metastable PdH superhydride using amorphous Pd nanoparticles (NPs) as a starting material at ∼32.
View Article and Find Full Text PDFElectrocatalytic nitrate reduction (NORR) is a promising route for sustainable ammonia synthesis under mild conditions. The widely studied Co-based catalysts undergo significant reconstruction due to nitrate oxidation and electric-field reduction during NORR, leading to activity degradation. To address this issue, we develop a CoNi heterostructured catalyst that consists of interlaced metallic Co and Ni domains.
View Article and Find Full Text PDFIron-based nanozymes are an emerging class of nanomaterials demonstrating significant potential in tumor therapy by inducing ferroptosis-a regulated form of cell death marked by iron-mediated lipid peroxidation (LPO). These nanozymes exhibit unique enzymatic activities, including peroxidase, oxidase, and glutathione oxidase-like functions, enabling them to generate reactive oxygen species (ROS) and disrupt tumor microenvironment homeostasis. Leveraging Fenton chemistry, iron-based nanozymes amplify oxidative stress within tumor cells, thereby overcoming therapeutic challenges such as drug resistance and nonspecific toxicity.
View Article and Find Full Text PDFNeuromorphic electronic devices mimicking the structure and functionality of biological counterparts have shown promising applications in biorealistic computing and bioelectronic interfaces. However, current neuromorphic systems comprising synapses and neurons typically exhibit complex integrated structures and lack chemically mediated characteristics, hindering them from direct biointerfacing. Here, we report a compact artificial synapse-neuron module (ASNM) by seamlessly integrating an organic electrochemical synaptic transistor and a niobium dioxide Mott memristor, showing the chemically mediated synaptic plasticity and highly stable spiking characteristics (>10 cycles).
View Article and Find Full Text PDFFor the aim of achieving the carbon-free energy scenario, green hydrogen (H) with non-CO emission and high energy density is regarded as a potential alternative to traditional fossil fuels. Over the last decades, significant breakthroughs have been realized on the alkaline hydrogen evolution reaction (HER), which is a fundamental advancement and efficient process to generate high-purity H in the laboratory. Based on this, the development of the practical industry-oriented anion exchange membrane water electrolyzer (AEMWE) is on the rise, showing competitiveness with the incumbent megawatt-scale H production technologies.
View Article and Find Full Text PDFThe high overpotential and unsatisfactory stability of RuO-based catalysts seriously hinder their application in acidic oxygen evolution reaction (OER). Herein, a Ru@RuO core/shell catalyst doped with atomically dispersed Mn species, denoted as Ru@Mn-RuO, is reported, which is prepared by a facile one-pot method. Detailed structural characterizations confirm that Mn is homogeneously and atomically distributed in RuO shell, which causes lattice contraction of RuO.
View Article and Find Full Text PDFElectrocatalytic water splitting in alkaline media plays an important role in hydrogen production technology. Normally, the catalytic activity of commonly used transition metal oxides usually suffers from unsatisfactory electron conductivity and unfavorable binding strength for transition intermediates. To boost the intrinsic catalytic activity, we propose a rational strategy to construct lattice distorted transition metal oxides decorated with noble-metal nanoclusters.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
July 2024
Electrocatalytic reduction of nitrate to ammonia provides a green alternate to the Haber-Bosch method, yet it suffers from sluggish kinetics and a low yield rate. The nitrate reduction follows a tandem reaction of nitrate reduction to nitrite and subsequent nitrite hydrogenation to generate ammonia, and the ammonia Faraday efficiency (FE) is limited by the competitive hydrogen evolution reaction. Herein, we design a heterostructure catalyst to remedy the above issues, which consists of Ni nanosphere core and Ni(OH) nanosheet shell (Ni/Ni(OH)).
View Article and Find Full Text PDFNanozymes, as a type of nanomaterials with enzymatic catalytic activity, have demonstrated tremendous potential in cancer treatment owing to their unique biomedical properties. However, the heterogeneity of tumors and the complex tumor microenvironment pose significant challenges to the catalytic efficacy of traditional nanozymes. Drawing inspiration from natural enzymes, scientists are now using biomimetic design to build nanozymes from the ground up.
View Article and Find Full Text PDFNat Commun
February 2024
Stretchable electronics that prevalently adopt chemically inert metals as sensing layers and interconnect wires have enabled high-fidelity signal acquisition for on-skin applications. However, the weak interfacial interaction between inert metals and elastomers limit the tolerance of the device to external friction interferences. Here, we report an interfacial diffusion-induced cohesion strategy that utilizes hydrophilic polyurethane to wet gold (Au) grains and render them wrapped by strong hydrogen bonding, resulting in a high interfacial binding strength of 1017.
View Article and Find Full Text PDFEnterprises are facing the superimposed challenges of digitalization and greening. The shift from reactive green technology innovation (RGT) to proactive green technology innovation (PGT) has special significance for sustainable economic development. Which strategies will companies choose? Can digital transformation (DT) motivate companies to transform their green innovation strategies? Enterprises' green innovation strategy choices must be explained with regard to digitalization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
Atomically dispersed single-atom catalysts are intriguing catalysts in the field of electrocatalysis for nearly 100% exploitation of metal atoms. However, they are still far from practical usage due to the scaling relationship limit and metal loading limit. Generation of a diatomic complex would offer superior catalytic performance through the cooperation of two neighboring atoms as active sites.
View Article and Find Full Text PDFMetal-oxygen bonds significantly affect the oxygen reaction kinetics of metal oxide-based catalysts but still face the bottlenecks of limited cognition and insufficient regulation. Herein, we develop a unique strategy to accurately tailor metal-oxygen bond structure via amorphous/crystalline heterojunction realized by ion-exchange. Compared with pristine amorphous CoSnO, iron ion-exchange induced amorphous/crystalline structure strengthens the Sn-O bond, weakens the Co-O bond strength, and introduces additional Fe-O bond, accompanied by abundant cobalt defects and optimal oxygen defects with larger pore structure and specific surface area.
View Article and Find Full Text PDFControl of structural ordering in noble metals is very important for the exploration of their properties and applications, and thus it is highly desired to have an in-depth understanding of their structural transitions. Herein, through high-pressure treatment, the mutual transformations between crystalline and amorphous phases are achieved in Pd nanosheets (NSs) and nanoparticles (NPs). The amorphous domains in the amorphous/crystalline Pd NSs exhibit pressure-induced crystallization (PIC) phenomenon, which is considered as the preferred structural response of amorphous Pd under high pressure.
View Article and Find Full Text PDFThe electrochemical performance and safe operation of the separator plays an important role in lithium-ion batteries. The introduction of inorganic nanoparticles into the separators with organic matter as the matrix effectively improves the thermal stability and wettability of the composite separators, but it also blocks some pores and adversely affects the electrochemical performance. Herein, vermiculite and laponite nanoparticles are introduced into a poly(vinylidene fluoride) matrix to prepare organic-inorganic composite separators for lithium-ion batteries and the synergistic effect of the two inorganic nanofillers is explored.
View Article and Find Full Text PDFReservoir computing (RC), as a brain-inspired neuromorphic computing algorithm, is capable of fast and energy-efficient temporal data analysis and prediction. Hardware implementation of RC systems can significantly reduce the computing time and energy, but it is hindered by current physical devices. Recently, dynamic memristors have proved to be promising for hardware implementation of such systems, benefiting from their fast and low-energy switching, nonlinear dynamics, and short-term memory behavior.
View Article and Find Full Text PDFSmall Methods
November 2021
Electrolyzers coupling electrocatalytic hydrogen evolution with oxidation reactions of small organic molecules have the merits of reducing cell voltage and generating high-value products. Herein, an electrolyzer is designed and optimized that can simultaneously achieve efficient hydrogen generation at the cathode, CO absorption by the catholyte, and methanol upgrading to formate at the anode. For these purposes, transition metal phosphides are used as the low-cost catalysts.
View Article and Find Full Text PDFChiral organophosphorus agents are distributed ubiquitously in the environment, but the neuroactivity of these asymmetric chemicals to humans remains uncertain. This scenario was to explore the stereoselective neurobiological response of human acetylcholinesterase (AChE) to chiral pyraclofos at the enantiomeric scale, and then decipher the microscopic basis of enantioselective neurotoxicity of pyraclofos enantiomers. The results indicated that (R)-/(S)-pyraclofos can form the bioconjugates with AChE with a stoichiometric ratio of 1:1, but the neuronal affinity of (R)-pyraclofos (K = 6.
View Article and Find Full Text PDFThe crystal phase of nanomaterials is one of the key parameters determining their physicochemical properties and performance in various applications. However, it still remains a great challenge to synthesize nanomaterials with different crystal phases while maintaining the same composition, size, and morphology. Here, a facile, one-pot, wet-chemical method is reported to synthesize Pd Sn nanorods with comparable size and morphology but different crystal phases, that is, an ordered intermetallic and a disordered alloy with L1 and face-centered cubic (fcc) phases, respectively.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2021
Aqueous zinc-ion batteries are recognized as one of the most potential neutral aqueous batteries because of the high energy density, high specific capacity, low cost, and low pollution. However, the applications of zinc-ion batteries are seriously limited by the capacity fading, easy-corrosion, side reaction, and hydrogen evolution. Herein, we report a uniform halloysite nanotubes (HNTs) coating which can guide Zn ions stripping/plating on the HNTs/Zn interfaces and protect the Zn anode.
View Article and Find Full Text PDFMetallic nanostructures are commonly densely packed into a few packing variants with slightly different atomic packing factors. The structural aspects and physicochemical properties related with the vacancies in such nanostructures are rarely explored because of lack of an effective way to control the introduction of vacancy sites. Highly voided metallic nanostructures with ordered vacancies are however energetically high lying and very difficult to synthesize.
View Article and Find Full Text PDFPhase engineering of nanomaterials (PEN) enables the preparation of metal nanomaterials with unconventional phases that are different from their thermodynamically stable counterparts. These unconventional-phase nanomaterials can serve as templates to construct precisely controlled metallic heterostructures for wide applications. Nevertheless, how the unconventional phase of templates affects the nucleation and growth of secondary metals still requires systematic explorations.
View Article and Find Full Text PDFHeterogeneous noble-metal-based catalysis plays an essential role in the production of fine chemicals. Rh-based catalysts are one of the most active candidates for indole synthesis. However, it is still highly desired to develop heterogeneous Rh-based catalysts with high activity and selectivity.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2021
Low-weight components of coal macromolecule were subjected to pyrolysis and condensation when magmatic rock intruded into coal measure, eventually, the residual condensed aromatic components can transform into microcrystalline graphite (coaly graphite). To study the structural transformation from anthracite to natural coaly graphite, ten samples with different graphitization degrees from Xinhua and Lutang of Hunan Province, China were characterized by organic geochemical analysis, X-ray diffraction (XRD), Raman spectroscopy, and high-resolution transmission electron microscopy (HRTEM). The geochemical parameters (proximate and ultimate analyses) and structural features (XRD, Raman, and HRTEM) of the series naturally graphitized coals exhibit a progressive change as the samples' locations closing to the intrusion.
View Article and Find Full Text PDF