Two-dimensional (2D) magnetic materials exhibit a wide array of fascinating magnetic properties, making them highly attractive for spintronic applications such as high-density nonvolatile memories and multifunctional nano-devices. Recently, chromium tellurides (CrTe) have attracted significant attention due to their metallic band structure, strong magnetic anisotropy, and tunable exchange couplings. The unique tunability of magnetic properties in a metallic ground state makes CrTea promising platform for generating, controlling, and manipulating spin currents.
View Article and Find Full Text PDFStructural superlubricity is a special frictionless contact in which two crystals are in incommensurate arrangement such that relative in-plane translation is associated with vanishing energy barrier crossing. So far, it has been realized in multilayer graphene and other van der Waals (2D crystals with hexagonal or triangular crystalline symmetries, leading to isotropic frictionless contacts. Directional structural superlubricity, to date unrealized in 2D systems, is possible when the reciprocal lattices of the two crystals coincide in one direction only.
View Article and Find Full Text PDF2D van der Waals (vdW) magnets, which extend to the monolayer (ML) limit, are rapidly gaining prominence in logic applications for low-power electronics. To improve the performance of spintronic devices, such as vdW magnetic tunnel junctions, a large effective spin polarization of valence electrons is highly desired. Despite its considerable significance, direct probe of spin polarization in these 2D magnets has not been extensively explored.
View Article and Find Full Text PDFA two-dimensional (2D) Weyl semimetal, akin to a spinful variant of graphene, represents a topological matter characterized by Weyl fermion-like quasiparticles in low dimensions. The spinful linear band structure in two dimensions gives rise to distinctive topological properties, accompanied by the emergence of Fermi string edge states. We report the experimental realization of a 2D Weyl semimetal, bismuthene monolayer grown on SnS(Se) substrates.
View Article and Find Full Text PDF2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal-oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO) and silicon nitride (SiN). Here, a seeded growth technique for crystallizing CrTe films on amorphous SiN/Si and SiO/Si substrates with a low thermal budget is presented.
View Article and Find Full Text PDFThe superconductor PdTe is known to host bulk Dirac bands and topological surface states. The coexistence of superconductivity and topological surface states makes PdTe a promising platform for exploring topological superconductivity and Majorana bound states. In this work, we report the spectroscopic characterization of ultrathin PdTe films with thickness down to three monolayers (ML).
View Article and Find Full Text PDFNat Commun
August 2022
Two-dimensional (2D) Dirac states with linear dispersion have been observed in graphene and on the surface of topological insulators. 2D Dirac states discovered so far are exclusively pinned at high-symmetry points of the Brillouin zone, for example, surface Dirac states at [Formula: see text] in topological insulators BiSe(Te) and Dirac cones at K and [Formula: see text] points in graphene. The low-energy dispersion of those Dirac states are isotropic due to the constraints of crystal symmetries.
View Article and Find Full Text PDFTuning interactions between Dirac states in graphene has attracted enormous interest because it can modify the electronic spectrum of the 2D material, enhance electron correlations, and give rise to novel condensed-matter phases such as superconductors, Mott insulators, Wigner crystals, and quantum anomalous Hall insulators. Previous works predominantly focus on the flat band dispersion of coupled Dirac states from different twisted graphene layers. In this work, a new route to realizing flat band physics in monolayer graphene under a periodic modulation from substrates is proposed.
View Article and Find Full Text PDFDiscoveries of the interfacial topological Hall effect (THE) provide an ideal platform for exploring the physics arising from the interplay between topology and magnetism. The interfacial topological Hall effect is closely related to the Dzyaloshinskii-Moriya interaction (DMI) at an interface and topological spin textures. However, it is difficult to achieve a sizable THE in heterostructures due to the stringent constraints on the constituents of THE heterostructures, such as strong spin-orbit coupling (SOC).
View Article and Find Full Text PDFWhile the discovery of two-dimensional (2D) magnets opens the door for fundamental physics and next-generation spintronics, it is technically challenging to achieve the room-temperature ferromagnetic (FM) order in a way compatible with potential device applications. Here, we report the growth and properties of single- and few-layer CrTe, a van der Waals (vdW) material, on bilayer graphene by molecular beam epitaxy (MBE). Intrinsic ferromagnetism with a Curie temperature (T) up to 300 K, an atomic magnetic moment of ~0.
View Article and Find Full Text PDFAntimony oxide nanostructures have been identified as candidates for a range of electronic and optoelectronic applications. Here we demonstrate the growth of 2-dimensional antimony oxide nanostructures on various substrates, including highly oriented pyrolytic graphite (HOPG), MoS and α-Bi(110) nanoislands. Using scanning tunneling microscopy (STM) we show that the nanostructures formed are exclusively highly crystalline α-SbO(111) monolayers with a lattice constant of 796 pm ± 7 pm.
View Article and Find Full Text PDFThe absence of inversion symmetry in non-centrosymmetric materials has a fundamental role in the emergence of a vast number of fascinating phenomena, like ferroelectricity, second harmonic generation, and Weyl fermions. The removal of time-reversal symmetry in such systems further extends the variety of observable magneto-electric and topological effects. Here we report the striking topological properties in the non-centrosymmetric spin-orbit magnet PrAlGe by combining spectroscopy and transport measurements.
View Article and Find Full Text PDFTwo-dimensional (2D) Dirac-like electron gases have attracted tremendous research interest ever since the discovery of free-standing graphene. The linear energy dispersion and nontrivial Berry phase play a pivotal role in the electronic, optical, mechanical, and chemical properties of 2D Dirac materials. The known 2D Dirac materials are gapless only within certain approximations, for example, in the absence of spin-orbit coupling (SOC).
View Article and Find Full Text PDFTopological matter is known to exhibit unconventional surface states and anomalous transport owing to unusual bulk electronic topology. In this study, we use photoemission spectroscopy and quantum transport to elucidate the topology of the room temperature magnet CoMnGa. We observe sharp bulk Weyl fermion line dispersions indicative of nontrivial topological invariants present in the magnetic phase.
View Article and Find Full Text PDFNodal-line semimetals (NLSs) represent a new type of topological semimetallic phase beyond Weyl and Dirac semimetals in the sense that they host closed loops or open curves of band degeneracies in the Brillouin zone. Parallel to the classification of type-I and type-II Weyl semimetals, there are two types of NLSs. The type-I NLS phase has been proposed and realized in many compounds, whereas the exotic type-II NLS phase that strongly violates Lorentz symmetry has remained elusive.
View Article and Find Full Text PDFOwing to the unusual geometry of kagome lattices-lattices made of corner-sharing triangles-their electrons are useful for studying the physics of frustrated, correlated and topological quantum electronic states. In the presence of strong spin-orbit coupling, the magnetic and electronic structures of kagome lattices are further entangled, which can lead to hitherto unknown spin-orbit phenomena. Here we use a combination of vector-magnetic-field capability and scanning tunnelling microscopy to elucidate the spin-orbit nature of the kagome ferromagnet FeSn and explore the associated exotic correlated phenomena.
View Article and Find Full Text PDFInorg Chem
February 2018
In the search for superconductivity in a BaAuSb-type monoclinic structure, we have successfully synthesized the new compound BaPtBi, which crystallizes in the space group P2/m (No. 11; Pearson symbol mP10) according to a combination of powder and single-crystal X-ray diffraction and scanning electron microscopy. A sharp electrical resistivity drop and large diamagnetic magnetization below 2.
View Article and Find Full Text PDFThe first Weyl semimetal was recently discovered in the NbP class of compounds. Although the topology of these novel materials has been identified, the surface properties are not yet fully understood. By means of scanning tunneling spectroscopy, we find that NbP's (001) surface hosts a pair of Dirac cones protected by mirror symmetry.
View Article and Find Full Text PDFNat Commun
October 2017
Through intense research on Weyl semimetals during the past few years, we have come to appreciate that typical Weyl semimetals host many Weyl points. Nonetheless, the minimum nonzero number of Weyl points allowed in a time-reversal invariant Weyl semimetal is four. Realizing such a system is of fundamental interest and may simplify transport experiments.
View Article and Find Full Text PDFThe recent proposal of the type-II Weyl semimetal state has attracted significant interest. In this Letter, we propose the concept of the three-dimensional type-II Dirac fermion and theoretically identify this new symmetry-protected topological state in the large family of transition-metal icosagenides, MA_{3} (M=V, Nb, Ta; A=Al, Ga, In). We show that the VAl_{3} family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node can be split into four type-II Weyl nodes with chiral charge ±1 via symmetry breaking.
View Article and Find Full Text PDFIn quantum field theory, Weyl fermions are relativistic particles that travel at the speed of light and strictly obey the celebrated Lorentz symmetry. Their low-energy condensed matter analogs are Weyl semimetals, which are conductors whose electronic excitations mimic the Weyl fermion equation of motion. Although the traditional (type I) emergent Weyl fermions observed in TaAs still approximately respect Lorentz symmetry, recently, the so-called type II Weyl semimetal has been proposed, where the emergent Weyl quasiparticles break the Lorentz symmetry so strongly that they cannot be smoothly connected to Lorentz symmetric Weyl particles.
View Article and Find Full Text PDFTopological metals and semimetals (TMs) have recently drawn significant interest. These materials give rise to condensed matter realizations of many important concepts in high-energy physics, leading to wide-ranging protected properties in transport and spectroscopic experiments. It has been well-established that the known TMs can be classified by the dimensionality of the topologically protected band degeneracies.
View Article and Find Full Text PDF