Ultrasonics
December 2025
Beamforming, the process of reconstructing B-mode images from raw radiofrequency (RF) data, significantly influences ultrasound image quality. While advanced beamforming methods aim to enhance the traditional Delay and Sum (DAS) technique, they require access to raw RF data, which is often unavailable to researchers when using clinical ultrasound scanners. Given that Filtered Delay Multiply and Sum (F-DMAS) is known to provide superior image quality compared to conventional DAS, this study introduces the idea of employing generative adversarial networks (GANs) that transform plane wave DAS images into ones resembling those produced by F-DMAS.
View Article and Find Full Text PDFFront Bioeng Biotechnol
March 2025
The assessment of carotid plaque vulnerability is a relevant clinical information that can help prevent adverse cerebrovascular events. To this aim, in this work we study the ability of different non-invasive methods for assessing plaque vulnerability in patients undergoing carotid endarterectomy (CEA). Histological examinations of patients' plaque samples were conducted after CEA while ultrasound (US) and computed tomography angiography (CTA) acquisitions were performed preoperatively.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2024
Microwave Imaging (MWI) is an emerging imaging technique that can potentially replace current clinical methods (i.e., Dual-energy X-ray absorptiometry (DXA), computerized tomography (CT)) involved in the identification of bone anomalies and in the diagnosis of conditions like osteoporosis and osteoarthritis.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
June 2025
Background And Objective: three-dimensional ultrasound imaging is based on two-dimensional (2-D) arrays controlled by application-specific integrated circuits, which implement the so-called microbeamformer (µB) to reduce the channel count. µBs are designed for line-by-line scan sequences based on focused beams (FBs), providing low frame rates. On the other hand, high frame rate (HFR) imaging techniques using defocused beams are increasingly attractive for reconstructing detailed tissue and blood motion information.
View Article and Find Full Text PDF: Carotid artery stenosis (CAS) is one of the main causes of stroke, and the vulnerability of plaque has been proved to be a determinant. A joint analysis of shear wave elastography, a radiofrequency echo-based wall tracking technique for arterial stiffness evaluation, and of autonomic and baroreflex function is proposed to noninvasively, preoperatively assess plaque vulnerability in asymptomatic CAS patients scheduled for carotid endarterectomy. : Elastographic markers of arterial stiffness were derived preoperatively in 78 CAS patients (age: 74.
View Article and Find Full Text PDFIn this study, we demonstrate that a deep neural network (DNN) can be trained to reconstruct high-contrast images, resembling those produced by the multistatic Synthetic Aperture (SA) method using a 128-element array, leveraging pre-beamforming radiofrequency (RF) signals acquired through the monostatic SA approach. : A U-net was trained using 27200 pairs of RF signals, simulated considering a monostatic SA architecture, with their corresponding delay-and-sum beamformed target images in a multistatic 128-element SA configuration. The contrast was assessed on 500 simulated test images of anechoic/hyperechoic targets.
View Article and Find Full Text PDFThe assessment of carotid plaque vulnerability is a relevant clinical information that can help prevent adverse cerebrovascular events. To this aim, in this study, we propose a patient-specific computational workflow to quantify the stress distribution in an atherosclerotic carotid artery, by means of geometric modeling and structural simulation of the plaque and vessel wall. Ten patients were involved in our study.
View Article and Find Full Text PDFWe aimed at evaluating the ability of point shear-wave elastography (pSWE) and of a radiofrequency (RF) echo-tracking-based method in preoperatively assessing the vulnerability of the carotid plaque in patients undergoing carotid endarterectomy (CEA) for significant asymptomatic stenosis. All patients who underwent CEA from 03/2021 to 03/2022 performed a preoperative pSWE and an RF echo-based wall evaluation of arterial stiffness using an Esaote MyLab ultrasound system (EsaoteTM, Genova, Italy) with dedicated software. The data derived from these evaluations (Young's modulus (YM), augmentation index (AIx), pulse-wave velocity (PWV)) were correlated with the outcome of the analysis of the plaque removed during the surgery.
View Article and Find Full Text PDFTexture analysis of medical images gives quantitative information about the tissue characterization for possible pathology discrimination. Ultrasound B-mode images are generated through a process called beamforming. Then, to obtain the final 8-bit image, the dynamic range value must be set.
View Article and Find Full Text PDF. In this paper, we focus on the dielectric and mechanical characterization of tissue-mimicking breast phantoms..
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
December 2021
This work demonstrates that the combination of multi-line transmission (MLT) and short-lag spatial coherence (SLSC) imaging improves the contrast of highly coherent structures within soft tissues when compared to both traditional SLSC imaging and conventional delay and sum (DAS) beamforming. Experimental tests with small (i.e.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
In this paper, for the first time, a triple-mode scan using electromagnetic waves, in the shape of millimeter waves, and ultrasound waves, to obtain B-mode and quasistatic elastography images of a phantom of human breast tissues is shown. A homogeneous phantom composed of nontoxic, low-cost and easy-to-handle materials (i.e.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2020
One of the current challenges in ultrasound imaging is achieving higher frame rates, particularly in cardiac applications, where tracking the heart motion and other rapid events can provide potential valuable diagnostic information. The main drawback of ultrasound high-frame-rate strategies is that usually they partly sacrifice image quality in order to speed up the acquisition time. In particular, multi-line transmission (MLT), which consists in transmitting multiple ultrasound beams simultaneously in different directions, has been proven able to improve frame rates in echocardiography, unfortunately generating artifacts due to inter-beam crosstalk interferences.
View Article and Find Full Text PDFPhys Med Biol
February 2019
Millimeter (mm)-wave imaging has been recently proposed as a new technique for breast cancer detection, based on the significant dielectric contrast between healthy and tumor tissues. Here we propose a procedure to fabricate, electromagnetically characterize and preserve realistic breast tissue-mimicking phantoms for testing mm-wave imaging prototypes. Low-cost, non-toxic and easy-to-produce mixtures made of sunflower oil, water and gelatin were prepared and their dielectric properties were for the first time measured in the (0.
View Article and Find Full Text PDFTissue Harmonic Imaging (THI) mode is currently one of the preferred choices by the clinicians for its ability to provide enhanced ultrasound images, thanks to the use of the second harmonic component of backscattered echoes. This paper aims at investigating whether the combination of THI with Filtered-Delay Multiply And Sum (F-DMAS) beamforming can provide further improvements in image quality. F-DMAS is a new non-linear beamformer, which, similarly to THI, is based on the use of the second harmonics of beamformed signals and is known to increase image contrast resolution and noise rejection.
View Article and Find Full Text PDFThe possibility to perform an early and repeatable assessment of imaging performance is fundamental in the design and development process of new ultrasound (US) probes. Particularly, a more realistic analysis with application-specific imaging targets can be extremely valuable to assess the expected performance of US probes in their potential clinical field of application. The experimental protocol presented in this work was purposely designed to provide an application-specific assessment procedure for newly-developed US probe prototypes based on Capacitive Micromachined Ultrasonic Transducer (CMUT) technology in relation to brain imaging.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Improving the frame rate is an important aspect in medical ultrasound imaging, particularly in 3D/4D cardiac applications. However, an accurate trade-off between the higher frame rate and image contrast and resolution should be performed. Plane-Wave Imaging (PWI) can potentially achieve frame rates in the order of 10 kHz, as it uses a single unfocused plane wave (and thus a single transmit event) to acquire the image of the entire region of interest.
View Article and Find Full Text PDFThe Synthetic Aperture Focusing (SAF) technique makes it possible to achieve a higher and more uniform quality of ultrasound images throughout depth, as if both transmit and receive dynamic focusing were applied. In this work we combine a particular implementation of SAF, called Synthetic Transmit Aperture (STA) technique, in which a single element in turn transmits and all the array elements receive the ultrasound wave, with the Filtered-Delay Multiply and Sum (F-DMAS) non-linear beamforming algorithm that we presented in a previous paper. We show that using F-DMAS, which is based on a measure of backscattered signal spatial correlation, B-mode images have a higher contrast resolution but suffer from a loss of brightness away from the transmit focus, when a classical scan with receive-only dynamic focusing is performed.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
February 2017
Capacitive micromachined ultrasonic transducers (CMUTs) represent an effective alternative to piezoelectric transducers for medical ultrasound imaging applications. They are microelectromechanical devices fabricated using silicon micromachining techniques, developed in the last two decades in many laboratories. The interest for this novel transducer technology relies on its full compatibility with standard integrated circuit technology that makes it possible to integrate on the same chip the transducers and the electronics, thus enabling the realization of extremely low-cost and high-performance devices, including both 1-D or 2-D arrays.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
October 2016
The Delay Multiply and Sum (DMAS) beamforming algorithm was originally conceived for microwave imaging of breast cancer. In a previous work, we demonstrated that, by properly modifying and improving the algorithm processing steps, DMAS can be successfully applied to ultrasound signals for B-mode image formation and that it outperforms standard Delay and Sum (DAS) beamforming in terms of contrast resolution. As previously pointed out, however, DMAS-beamformed B-mode images, in which fixed and dynamic focusing are applied respectively during transmit and receive operations, show an intensity drop away from the transmit focal depth compared to DAS images.
View Article and Find Full Text PDFIEEE Trans Med Imaging
April 2015
Most of ultrasound medical imaging systems currently on the market implement standard Delay and Sum (DAS) beamforming to form B-mode images. However, image resolution and contrast achievable with DAS are limited by the aperture size and by the operating frequency. For this reason, different beamformers have been presented in the literature that are mainly based on adaptive algorithms, which allow achieving higher performance at the cost of an increased computational complexity.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
May 2014
In modern ultrasound imaging devices, two-dimensional probes and electronic scanning allow volumetric imaging of anatomical structures. When dealing with the design of such complex 3-D ultrasound (US) systems, as the number of transducers and channels dramatically increases, new challenges concerning the integration of electronics and the implementation of smart micro-beamforming strategies arise. Hence, the possibility to predict the behavior of the whole system is mandatory.
View Article and Find Full Text PDFBackground: In spite of the advances made in the design of dexterous anthropomorphic hand prostheses, these sophisticated devices still lack adequate control interfaces which could allow amputees to operate them in an intuitive and close-to-natural way. In this study, an anthropomorphic five-fingered robotic hand, actuated by six motors, was used as a prosthetic hand emulator to assess the feasibility of a control approach based on Principal Components Analysis (PCA), specifically conceived to address this problem. Since it was demonstrated elsewhere that the first two principal components (PCs) can describe the whole hand configuration space sufficiently well, the controller here employed reverted the PCA algorithm and allowed to drive a multi-DoF hand by combining a two-differential channels EMG input with these two PCs.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
May 2012
Nowadays, ultrasound diagnostic imaging is one of the non-invasive techniques mostly used in the clinical practice. Recent advances in this field have brought to the development of small and portable systems. New bidimensional probes consisting of 2D phased arrays, allow to obtain real-time 3D representations of moving organs and blood vessels anatomy.
View Article and Find Full Text PDF