Texture analysis of ultrasound images obtained with different beamforming techniques and dynamic ranges - A robustness study.

Ultrasonics

Polito(BIO)Med Lab, Biolab, Dept. of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy.

Published: May 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Texture analysis of medical images gives quantitative information about the tissue characterization for possible pathology discrimination. Ultrasound B-mode images are generated through a process called beamforming. Then, to obtain the final 8-bit image, the dynamic range value must be set. It is currently unknown how different beamforming techniques or dynamic range values may alter the final image texture. We provide here a robustness analysis of first and higher order texture features using six beamforming methods and seven dynamic range values, on experimental phantom and in vivo musculoskeletal images acquired using two different ultrasound research scanners. To investigate the repeatability of the texture parameters, we applied the multivariate analysis of variance (MANOVA) and estimated the intraclass correlation coefficient (ICC) on the texture features calculated on the B-mode images created with different beamforming methods and dynamic range values. We demonstrated the high repeatability of texture features when varying the dynamic range and showed texture features can differentiate between beamforming methods through a MANOVA analysis, hinting at the potential future clinical application of specific beamformers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2023.106940DOI Listing

Publication Analysis

Top Keywords

dynamic range
20
texture features
16
range values
12
beamforming methods
12
texture
8
texture analysis
8
beamforming techniques
8
techniques dynamic
8
b-mode images
8
methods dynamic
8

Similar Publications

This qualitative study explores what factors influence teaming in behavioral health settings, from the perspective of behavioral health providers. Twenty-four participants from a range of behavioral health professions engaged in semi-structured interviews. Using a grounded theory approach, data were analyzed, and a "prism" model was developed to capture the complexities of behavioral health providers' perceptions of factors influencing teaming in various mental health and/or substance use disorder treatment programs.

View Article and Find Full Text PDF

Quantum simulations of many-body systems are among the most promising applications of quantum computers. In particular, models based on strongly correlated fermions are central to our understanding of quantum chemistry and materials problems, and can lead to exotic, topological phases of matter. However, owing to the non-local nature of fermions, such models are challenging to simulate with qubit devices.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) preferentially localizes in the bone marrow (BM) and displays recurrent patterns of medullary and extra-medullary involvement. Leukemic cells exploit their niche for propagation and survive selective pressure by chemotherapy in the BM microenvironment, suggesting the existence of protective mechanisms. Here, we established a three-dimensional (3D) BM mimic with human mesenchymal stromal cells and endothelial cells that resemble vasculature-like structures to explore the interdependence of leukemic cells with their microenvironment.

View Article and Find Full Text PDF

From a physics perspective, DNA and RNA molecules are characterized as dynamic biological structures that exhibit vibrations across a range of time scales. To conduct a more accurate investigation of their dynamic properties, it is essential to consider the environmental conditions surrounding these molecules. A harmonic Hamiltonian that incorporates damping, along with the Green's function method, has been utilized to analyze the vibrational responses of viscous DNA and RNA strands.

View Article and Find Full Text PDF

Imprints of extreme prematurity on functional brain networks in school-aged children and adolescents.

Neuroimage

September 2025

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland. Electronic address:

Cognitive functions emerge from dynamic functional interplay of cortical and subcortical areas that form networks. Preterm birth poses a risk for the formation and functionality of brain networks which may lead to severe brain dysfunctions. Infants born extremely preterm have the highest risk of developing neurocognitive impairments.

View Article and Find Full Text PDF