Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, we demonstrate that a deep neural network (DNN) can be trained to reconstruct high-contrast images, resembling those produced by the multistatic Synthetic Aperture (SA) method using a 128-element array, leveraging pre-beamforming radiofrequency (RF) signals acquired through the monostatic SA approach. : A U-net was trained using 27200 pairs of RF signals, simulated considering a monostatic SA architecture, with their corresponding delay-and-sum beamformed target images in a multistatic 128-element SA configuration. The contrast was assessed on 500 simulated test images of anechoic/hyperechoic targets. The DNN's performance in reconstructing experimental images of a phantom and different scenarios was tested too. : The DNN, compared to the simple monostatic SA approach used to acquire pre-beamforming signals, generated better-quality images with higher contrast and reduced noise/artifacts. : The obtained results suggest the potential for the development of a single-channel setup, simultaneously providing good-quality images and reducing hardware complexity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186640 | PMC |
http://dx.doi.org/10.1109/OJEMB.2024.3401098 | DOI Listing |