Synthetic and naturally occurring particles, such as nanoparticles (NPs) and exosomes; a type of extracellular vesicles (EVs), have garnered widespread attention across various fields, including biomaterials, oncology, and delivery systems for drugs and vaccines. Traditional methods for identifying NPs and EVs, such as transmission electron microscopy, are often prohibitively expensive and labor-intensive. As an alternative, the assessment of electrokinetic attributes such as zeta potential or electrophoretic mobility, conductance, and mean count rate, offers a more cost-effective, rapid, and reliable means of characterizing these particles.
View Article and Find Full Text PDFCell Death Discov
May 2025
Mutations in genes affecting mitochondrial complex I (CI) can lead to mitochondrial cardiomyopathy (MCM) yet no effective treatment. This study sought to determine whether adeno-associated virus 9 (AAV9)-based gene therapy could prevent or rescue Ndufs6 deficiency-induced MCM at different disease stages. Using Ndufs6 mice to mimic MCM, cardiac dysfunction was evident at week 4 post-birth, showing reduced ejection fraction, CI activity, increased fibrosis, mitochondrial fission, and disrupted cristae.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
X-linked adrenoleukodystrophy (X-ALD) is a common peroxisomal disorder caused by mutations in the gene, leading to the accumulation of very long-chain fatty acids (VLCFAs). This progressive neurodegenerative disease manifests in three primary forms: childhood-acquired cerebral demyelination (CALD), adult myelopathy (AMN), and primary adrenal cortical insufficiency. Bone marrow transplantation effectively halts disease progression only in the early stages of CALD.
View Article and Find Full Text PDFMacrophages play multiple roles in innate immunity including phagocytosing pathogens, modulating the inflammatory response, presenting antigens, and recruiting other immune cells. Tissue-resident macrophages (TRMs) adapt to the local microenvironment and can exhibit different immune responses upon encountering distinct pathogens. In this study, we generated induced macrophages (iMACs) derived from human pluripotent stem cells (hPSCs) to investigate the interactions between the macrophages and various human pathogens, including the hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and .
View Article and Find Full Text PDFBackground: Protection of cardiac function following myocardial infarction was largely enhanced by bradykinin-pretreated cardiac-specific c-kit (BK-c-kit) cells, even without significant engraftment, indicating that paracrine actions of BK-c-kit cells play a pivotal role in angiogenesis. Nevertheless, the active components of the paracrine actions of BK-c-kit cells and the underlying mechanisms remain unknown. This study aimed to define the active components of exosomes from BK-c-kit cells and elucidate their underlying protective mechanisms.
View Article and Find Full Text PDFMitochondrial cardiomyopathy (MCM) is characterized by abnormal heart-muscle structure and function, caused by mutations in the nuclear genome or mitochondrial DNA. The heterogeneity of gene mutations and various clinical presentations in patients with cardiomyopathy make its diagnosis, molecular mechanism, and therapeutics great challenges. This review describes the molecular epidemiology of MCM and its clinical features, reviews the promising diagnostic tests applied for mitochondrial diseases and cardiomyopathies, and details the animal and cellular models used for modeling cardiomyopathy and to investigate disease pathogenesis in a controlled in vitro environment.
View Article and Find Full Text PDFBackground: Exercise is an effective nonpharmacological strategy to alleviate diabetic cardiomyopathy (DCM) through poorly defined mechanisms. FGF21 (fibroblast growth factor 21), a peptide hormone with pleiotropic benefits on cardiometabolic homeostasis, has been identified as an exercise responsive factor. This study aims to investigate whether FGF21 signaling mediates the benefits of exercise on DCM, and if so, to elucidate the underlying mechanisms.
View Article and Find Full Text PDFHuman pluripotent stem cell differentiation towards hematopoietic progenitor cell can serve as an in vitro model for human embryonic hematopoiesis, but the dynamic change of epigenome and transcriptome remains elusive. Here, we systematically profile the chromatin accessibility, H3K4me3 and H3K27me3 modifications, and the transcriptome of intermediate progenitors during hematopoietic progenitor cell differentiation in vitro. The integrative analyses reveal sequential opening-up of regions for the binding of hematopoietic transcription factors and stepwise epigenetic reprogramming of bivalent genes.
View Article and Find Full Text PDFDysfunctional immune responses contribute critically to the progression of Coronavirus Disease-2019 (COVID-19), with macrophages as one of the main cell types involved. It is urgent to understand the interactions among permissive cells, macrophages, and the SARS-CoV-2 virus, thereby offering important insights into effective therapeutic strategies. Here, we establish a lung and macrophage co-culture system derived from human pluripotent stem cells (hPSCs), modeling the host-pathogen interaction in SARS-CoV-2 infection.
View Article and Find Full Text PDFA major obstacle for using human pluripotent stem cells (hPSCs) derived vascular cells for cell therapy is the lack of simple, cost-saving, and scalable methods for cell production. Here we described a simplified and chemically defined medium (AATS) for endothelial cells (ECs) and smooth muscle cells (SMCs) differentiation. AATS medium does not contain insulin, enabling the rapid and highly efficient vascular mesoderm formation through accelerating metabolic and autophagy-enhanced mesoderm induction.
View Article and Find Full Text PDFAn increasing number of children with severe coronavirus disease 2019 (COVID-19) is being reported, yet the spectrum of disease severity and expression patterns of angiotensin-converting enzyme 2 (ACE2) in children at different developmental stages are largely unknow. We analysed clinical features in a cohort of 173 children with COVID-19 (0-15 yrs.-old) between January 22, 2020 and March 15, 2020.
View Article and Find Full Text PDFThere is an urgent need to create novel models using human disease-relevant cells to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology and to facilitate drug screening. Here, as SARS-CoV-2 primarily infects the respiratory tract, we developed a lung organoid model using human pluripotent stem cells (hPSC-LOs). The hPSC-LOs (particularly alveolar type-II-like cells) are permissive to SARS-CoV-2 infection, and showed robust induction of chemokines following SARS-CoV-2 infection, similar to what is seen in patients with COVID-19.
View Article and Find Full Text PDFDysfunctional immune responses contribute critically to the progression of Coronavirus Disease-2019 (COVID-19) from mild to severe stages including fatality, with pro-inflammatory macrophages as one of the main mediators of lung hyper-inflammation. Therefore, there is an urgent need to better understand the interactions among SARS-CoV-2 permissive cells, macrophage, and the SARS-CoV-2 virus, thereby offering important insights into new therapeutic strategies. Here, we used directed differentiation of human pluripotent stem cells (hPSCs) to establish a lung and macrophage co-culture system and model the host-pathogen interaction and immune response caused by SARS-CoV-2 infection.
View Article and Find Full Text PDFDifferent populations of cardiovascular progenitor cells have been shown to possess varying differentiation potentials. They have also been used to facilitate heart repair. However, sensitive reporter cell lines that mark the human cardiovascular progenitors are in short supply.
View Article and Find Full Text PDFThe SARS-CoV-2 virus has caused already over 3.5 million COVID-19 cases and 250,000 deaths globally. There is an urgent need to create novel models to study SARS-CoV-2 using human disease-relevant cells to understand key features of virus biology and facilitate drug screening.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) are susceptible to numerical and structural chromosomal alterations during long-term culture. We show that mitotic errors occur frequently in hPSCs and that prometaphase arrest leads to very rapid apoptosis in undifferentiated but not in differentiated cells. hPSCs express high levels of proapoptotic protein NOXA in undifferentiated state.
View Article and Find Full Text PDFBackground: Hematopoietic lineage cells derived from human pluripotent stem cells (hPSCs) hold great promise for the treatment of hematological diseases and providing sufficient cells for immune therapy. However, a simple, cost-effective method to generate large quantities of hematopoietic stem/progenitor cells (HSPCs) is not yet available.
Methods: We established a monolayer, chemically defined culture system to induce hematopoietic differentiation from hPSCs in 8 days.
In this Letter, the 'Open chromatin' label in Fig. 4a should have been centred above the first three columns, and the black horizontal line underneath the label should have been removed. In addition, there should have been a vertical black line between the last two sets of panels for consistency.
View Article and Find Full Text PDFUpon fertilization, drastic chromatin reorganization occurs during preimplantation development . However, the global chromatin landscape and its molecular dynamics in this period remain largely unexplored in humans. Here we investigate chromatin states in human preimplantation development using an improved assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) .
View Article and Find Full Text PDFBackground: Generation of large quantities of endothelial cells is highly desirable for vascular research, for the treatment of ischemia diseases, and for tissue regeneration. To achieve this goal, we developed a simple, chemically defined culture system to efficiently and rapidly differentiate endothelial cells from human pluripotent stem cells by going through an MESP1 mesoderm progenitor stage.
Methods: Mesp1 is a key transcription factor that regulates the development of early cardiovascular tissue.
Differentiation of human embryonic stem cells into mesendoderm (ME) is directed by extrinsic signals and intrinsic epigenetic modifications. However, the dynamics of these epigenetic modifications and the mechanisms by which extrinsic signals regulate the epigenetic modifications during the initiation of ME differentiation remain elusive. In this study, we report that levels of histone H3 Lys-27 trimethylation (H3K27me3) decrease during ME initiation, which is essential for subsequent differentiation induced by the combined effects of activin and Wnt signaling.
View Article and Find Full Text PDF