Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Macrophages play multiple roles in innate immunity including phagocytosing pathogens, modulating the inflammatory response, presenting antigens, and recruiting other immune cells. Tissue-resident macrophages (TRMs) adapt to the local microenvironment and can exhibit different immune responses upon encountering distinct pathogens. In this study, we generated induced macrophages (iMACs) derived from human pluripotent stem cells (hPSCs) to investigate the interactions between the macrophages and various human pathogens, including the hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and . iMACs can engulf all three pathogens. A comparison of the RNA-seq data of the iMACs encountering these pathogens revealed that the pathogens activated distinct gene networks related to viral response and inflammation in iMACs. Interestingly, in the presence of both HCV and host cells, iMACs upregulated different sets of genes involved in immune cell migration and chemotaxis. Finally, we constructed an image-based high-content analysis system consisting of iMACs, recombinant GFP-HCV, and hepatic cells to evaluate the effect of a chemical inhibitor on HCV infection. In summary, we developed a human cell-based in vitro model to study the macrophage response to human viral and bacterial infections; the results of the transcriptome analysis indicated that the iMACs were a useful resource for modeling pathogen-macrophage-tissue microenvironment interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053470PMC
http://dx.doi.org/10.3390/v16040552DOI Listing

Publication Analysis

Top Keywords

human pluripotent
8
pluripotent stem
8
imacs
7
pathogens
6
human
5
macrophages
5
comparative study
4
study human
4
stem cell-derived
4
cell-derived macrophages
4

Similar Publications

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

Technological advances and the desire to reduce dependence on animal models have brought human-relevant models to the forefront of drug development. This paradigm shift is leveraging the advances in systems and new approach methodologies (NAMs), which was the focus of a workshop convened by the Health and Environmental Sciences Institute (HESI) in May 2024. Highlights included discussions on predicting cardiac failure modes and the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), microfluidic systems like BioFlux™, and engineered heart tissues in enhancing early-stage drug safety assessments.

View Article and Find Full Text PDF

Hypophosphatasia (HPP) is caused by inactivating variants of ALPL, the gene encoding tissue non-specific alkaline phosphatase (TNSALP). In order to deepen our understanding of the pathogenic mechanisms of HPP, we herein generated ALPL-knockout (KO) human induced pluripotent stem (iPS) cells by applying CRISPR/Cas9-mediated gene deletion to an iPS clone derived from a healthy subject. We analyzed two ALPL-KO clones, one ALPL-hetero KO clone, and a control clone isogenic except for ALPL.

View Article and Find Full Text PDF

Cortical versus hippocampal network dysfunction in a human brain assembloid model of epilepsy and intellectual disability.

Cell Rep

September 2025

Department of Neurology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA 90095, USA; Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Un

Neurodevelopmental disorders often impair multiple cognitive domains. For instance, a genetic epilepsy syndrome might cause seizures due to cortical hyperexcitability and present with memory impairments arising from hippocampal dysfunction. This study examines how a single disorder differentially affects distinct brain regions using induced pluripotent stem cell (iPSC)-derived cortical- and hippocampal-ganglionic eminence assembloids to model developmental and epileptic encephalopathy 13, a condition arising from gain-of-function mutations in the SCN8A gene encoding the sodium channel Nav1.

View Article and Find Full Text PDF

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a hereditary infiltrative cardiomyopathy characterized by fibrofatty replacement of the right ventricular myocardium, which may extend to the left ventricle in the advanced stages. Clinically, the condition is commonly associated with right ventricular dilation, malignant arrhythmias, and an increased risk of sudden cardiac death. In this study, we successfully established induced pluripotent stem cell (iPSC) lines from peripheral blood mononuclear cells of ARVC patients carrying a heterozygous LMNA gene mutation (c.

View Article and Find Full Text PDF