Publications by authors named "Drishya Prakashan"

Wound healing is an intricate physiological process, with acute and chronic wounds imposing significant burdens on the healthcare systems worldwide. This study reports the development fully biodegradable silica gel fiber (SGF) scaffolds for enhanced skin tissue regeneration. Three types of wound dressings, differing in their structure, are fabricated: pressure-spun silica gel µ-fibers (pSGF) allowing cell penetration, electrospun sub-µ silica gel fibers (eSGF) mimicking an extracellular matrix (ECM)-like sub-µ-structure with narrow mesh sizes allowing no cell ingrowth, and a hybrid scaffold combining both fiber types (peSGF) that combines the advantages of both structures.

View Article and Find Full Text PDF

The increasing generation of e-waste necessitates innovative strategies for recycling and repurposing, especially for materials with high functional potential. In this study, carbon black (CB) extracted from waste printer toner cartridges is micro-recycled and oxidized into hydrophilic oxidized carbon black (OCB), transforming it into a magnetically active material for single-stranded DNA (ssDNA) adsorption in systematic evolution of ligands by exponential enrichment (SELEX). The developed OCB-SELEX approach successfully overcomes a key limitation in SELEX by enabling magnetic separation of target-bound ssDNA, eliminating nonspecific sequences efficiently.

View Article and Find Full Text PDF

Electrospun nanofibers exhibit a significant potential in the synthesis of nanostructured materials, thereby offering a promising avenue for enhancing the efficacy of wound care. The present study aimed to investigate the wound-healing potential of two biomacromolecules, PCL-Gelatin nanofiber adhered with bone marrow-derived mesenchymal stem cells (BMSCs). Characterisation of the nanofiber revealed a mean fiber diameter ranging from 200 to 300 nm, with distinctive elemental peaks corresponding to polycaprolactone (PCL) and gelatin.

View Article and Find Full Text PDF

Lateral flow assays (LFAs) are among the utmost cost-efficient, paper-based point-of-care (POC) diagnostic devices. Herein, we have reported the fabrication of a competitive LFA for on-site detection of penicillin. Various parameters such as Ab concentration for conjugation, Pen-BSA conjugate concentration, pore size of membrane, and blocking buffer were standardised for the fabrication of LFA.

View Article and Find Full Text PDF

Salmonella strain is a prevalent pathogen, affecting poultry industry and hence human population around the world. Host-specific pathogen infections including fowl typhoid, pullorum disease and typhoid fever affects poultry birds, causing huge economic loss worldwide. This study explored the fabrication of immunochromatographic (ICG) strip by colorimetric method integrated with smartphone ColorGrab application for the detection of Salmonella using in-house generated antibodies (Abs) conjugated with gold nanoparticles.

View Article and Find Full Text PDF

Personalized point-of-care testing (POCT) devices, such as wearable sensors, enable quick access to health monitoring without the use of complex instruments. Wearable sensors are gaining popularity owing to their ability to offer regular and continuous monitoring of physiological data by dynamic, non-invasive assessments of biomarkers in biofluids such as tear, sweat, interstitial fluid and saliva. Current advancements have concentrated on the development of optical and electrochemical wearable sensors as well as advances in non-invasive measurements of biomarkers such as metabolites, hormones and microbes.

View Article and Find Full Text PDF

Two-dimensional (2D) nanomaterials with chemical and structural diversity have piqued the interest of the scientific community due to their superior photonic, mechanical, electrical, magnetic, and catalytic capabilities that distinguish them from their bulk counterparts. Among these 2D materials, two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides with a general chemical formula of MXT (where = 1-3), together known as MXenes, have gained tremendous popularity and demonstrated competitive performance in biosensing applications. In this review, we focus on the cutting-edge advances in MXene-related biomaterials, with a systematic summary on their design, synthesis, surface engineering approaches, unique properties, and biological properties.

View Article and Find Full Text PDF

One of the greatest challenges faced during surgical procedures is closing and healing of wounds, which are essential in the field of orthopaedics, trauma, intensive care and general surgery. One of the main causes of death has been linked to chronic wounds, especially in immunosuppressant or diabetic patients. Due to increasing chronic wound fatality along with different pathologies associated with them, the current therapeutic methods are insufficient which has established an eminent need for innovative techniques.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic has emphasized the need for development of a rapid diagnostic device for the effective treatment and its mitigation. Lateral flow immunoassay (LFIA) belongs to a class of diagnostic devices, which has the benefit of providing quick results, easy to handle, low cost, and on-site applicable. So far, several LFIA has been developed for the detection of infectious severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), however, only a few of them are antigen (Ag)-based.

View Article and Find Full Text PDF

Lateral flow assays (LFAs) are one of the most economical, point-of-care (PoC) diagnostic assays that exploit the colorimetric properties of gold nanoparticles (AuNPs). Up to the best of our knowledge, no rapid antigen-based LFA exists for Japanese Encephalitis Virus (JEV) detection. Herein, we have reported a novel portable sandwich-type LFA for on-site detection of the non-structural 1 (NS1) secretory protein of JEV.

View Article and Find Full Text PDF