Background: Bone regeneration and repair are critical research areas within regenerative medicine, aiming to address the challenges posed by critical-sized bone defects. Bioscaffolds and cell-based therapies have been explored to enhance osteogenesis and promote effective bone regeneration. This study aimed to assess the regenerative potential of rabbit amniotic membrane (rAM) derived bioscaffold and its comparative evaluation with another bioscaffold, the decellularized periosteum (DP) of the buffalo rib, which was recellularized with rAM derived mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFElectrospun nanofibers exhibit a significant potential in the synthesis of nanostructured materials, thereby offering a promising avenue for enhancing the efficacy of wound care. The present study aimed to investigate the wound-healing potential of two biomacromolecules, PCL-Gelatin nanofiber adhered with bone marrow-derived mesenchymal stem cells (BMSCs). Characterisation of the nanofiber revealed a mean fiber diameter ranging from 200 to 300 nm, with distinctive elemental peaks corresponding to polycaprolactone (PCL) and gelatin.
View Article and Find Full Text PDFBackground: The amniotic membrane (AM) has shown immense potential in repairing wounds due to its great regenerative qualities. Although the role of AM as a biological scaffold in repairing wounds has been studied well, the tissue regenerative potential of AM-derived mesenchymal stem cells (MSCs) and conditioned media (CM) derived from it remains to be discovered as of now. Here, we examined the wound healing abilities of fresh and frozen thawed rabbit AM (rAM) along with the MSCs and their lyophilised CM in rabbits challenged with skin wounds.
View Article and Find Full Text PDF