Publications by authors named "Deyang Xu"

The plant funiculus anchors the developing seed to the placenta within the inner dorsal pod strands of the silique wall and directly transports nutrients to the seeds. The lignified vasculature critically supports nutrient transport through the funiculus. However, molecular mechanisms underlying lignified secondary cell wall (SCW) biosynthesis in the funiculus remain elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Sodium and potassium were introduced into LaSrCuO to create LaSrKNaCuO solid solutions through a solid-state reaction, resulting in distinct crystallization patterns for different compositions.
  • The substitution of four Sr ions by one Na, one K, and two La ions leads to a varying property, specifically the transition temperature (T), which changes with the composition of the solution.
  • As the Na content increases, the transition temperature initially rises from 14.8 K at low Na concentration (x = 0.00) to 33.9 K at x = 0.10, before dropping to 18.5 K at x = 0.175.
View Article and Find Full Text PDF

An AA'BO-type perovskite oxide PbMn(CrMn)O was synthesized by high-pressure solid-state reactions at 8 GPa and 1373 K. Synchrotron X-ray diffraction shows a cubic crystal structure with the space group 3̄. The charge states are verified by X-ray photoelectron spectroscopy to be PbMn(CrMnMn)O, where the Pb and Mn are 1 : 3 ordered respectively at A and A' sites, while the Cr, Mn and Mn are disorderly distributed at the B site.

View Article and Find Full Text PDF

Many plant species translocate maternally synthesized specialized metabolites to the seed to protect the developing embryo and later the germinating seedling before it initiates its own de novo synthesis. While the transport route into the seed is well established for primary metabolites, no model exists for any class of specialized metabolites that move from maternal source tissue(s) to embryo. Glucosinolate seed loading in Arabidopsis depends on plasma membrane localized exporters (USUALLY MULTIPLE AMINO ACIDS MOVE IN AND OUT TRANSPORTERs, UMAMITs) and importers (GLUCOSINOLATE TRANSPORTERs, GTRs), but the critical barriers in the seed loading process remain unknown.

View Article and Find Full Text PDF

Glucosinolates are key defense compounds of plants in Brassicales order, and their accumulation in seeds is essential for the protection of the next generation. Recently, members of the Usually Multiple Amino acids Move In and Out Transporter (UMAMIT) family were shown to be essential for facilitating transport of seed-bound glucosinolates from site of synthesis within the reproductive organ to seeds. Here, we set out to identify amino acid residues responsible for glucosinolate transport activity of the main seed glucosinolate exporter UMAMIT29 in .

View Article and Find Full Text PDF

Plant membrane transporters controlling metabolite distribution contribute key agronomic traits. To eliminate anti-nutritional factors in edible parts of crops, the mutation of importers can block the accumulation of these factors in sink tissues. However, this often results in a substantially altered distribution pattern within the plant, whereas engineering of exporters may prevent such changes in distribution.

View Article and Find Full Text PDF

Even though Sugars Will Eventually be Exported Transporters (SWEETs) have been found in every sequenced plant genome, a comprehensive understanding of their functionality is lacking. In this study, we focused on the SWEET family of barley (Hordeum vulgare). A radiotracer assay revealed that expressing HvSWEET11b in African clawed frog (Xenopus laevis) oocytes facilitated the bidirectional transfer of not only just sucrose and glucose, but also cytokinin.

View Article and Find Full Text PDF

Correction for 'The ins and outs of transporters at plasma membrane and tonoplast in plant specialized metabolism' by Deyang Xu and Barbara Ann Halkier, , 2022, https://doi.org/10.1039/d2np00016d.

View Article and Find Full Text PDF

Covering: up to 2022Plants are organic chemists par excellence and produce an amazing array of diverse chemical structures. Whereas primary metabolites are essential for all living organisms and highly conserved, the specialized metabolites constitute the taxonomy-specific chemical languages that are key for fitness and survival. Allocation of plants' wide array of specialized metabolites in patterns that are fine-tuned spatiotemporally is essential for adaptation to the ever-changing environment and requires transport processes.

View Article and Find Full Text PDF

In the phloem cap region of Arabidopsis plants, sulfur-rich cells (S-cells) accumulate >100 mM glucosinolates (GLS), but are biosynthetically inactive. The source and route of S-cell-bound GLS remain elusive. In this study, using single-cell sampling and scanning electron microscopy with energy-dispersive X-ray analysis we show that two GLS importers, NPF2.

View Article and Find Full Text PDF

Shea tree (Vitellaria paradoxa) is one economically important plant species that mainly distributes in West Africa. Shea butter extracted from shea fruit kernels can be used as valuable products in the food and cosmetic industries. The most valuable composition in shea butter was one kind of triacylglycerol (TAG), 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0-C18:1-C18:0).

View Article and Find Full Text PDF

This protocol describes how to order and directly assemble uracil-containing non-clonal DNA fragments by uracil excision based cloning (USER cloning). The protocol was generated with the goal of making synthesized non-clonal DNA fragments directly compatible with USER cloning. The protocol is highly efficient and would be compatible with uracil-containing non-clonal DNA fragments obtained from any synthesizing company.

View Article and Find Full Text PDF

Transport proteins are crucial for cellular function at all levels. Numerous importers and exporters facilitate transport of a diverse array of metabolites and ions intra- and intercellularly. Identification of transporter function is essential for understanding biological processes at both the cellular and organismal level.

View Article and Find Full Text PDF

Background: Plants are exposed to diverse pathogens and pests, yet most plants are resistant to most plant pathogens. Non-host resistance describes the ability of all members of a plant species to successfully prevent colonization by any given member of a pathogen species. White blister rust caused by Albugo species can overcome non-host resistance and enable secondary infection and reproduction of usually non-virulent pathogens, including the potato late blight pathogen Phytophthora infestans on Arabidopsis thaliana.

View Article and Find Full Text PDF

Despite vast diversity in metabolites and the matching substrate specificity of their transporters, little is known about how evolution of transporter substrate specificities is linked to emergence of substrates via evolution of biosynthetic pathways. Transporter specificity towards the recently evolved glucosinolates characteristic of is shown to evolve prior to emergence of glucosinolate biosynthesis. Furthermore, we show that glucosinolate transporters belonging to the ubiquitous NRT1/PTR FAMILY (NPF) likely evolved from transporters of the ancestral cyanogenic glucosides found across more than 2500 species outside of the .

View Article and Find Full Text PDF

Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimalarial quinine and neurotoxin strychnine, are synthesized in several different cellular locations. However, the transporters that control the movement of these biosynthetic intermediates within cellular compartments have not been discovered.

View Article and Find Full Text PDF

Casparian strip-generated apoplastic barriers not only control the radial flow of both water and ions but may also constitute a hindrance for the rhizosecretion of stele-synthesized phytochemicals. Here, we establish root-synthesized glucosinolates (GLS) are in Arabidopsis as a model to study the transport routes of plant-derived metabolites from the site of synthesis to the rhizosphere. Analysing the expression of GLS synthetic genes in the root indicate that the stele is the major site for the synthesis of aliphatic GLS, whereas indole GLS can be synthesized in both the stele and the cortex.

View Article and Find Full Text PDF

We reviewed the history and applications of microorganism co-cultivation in food, agriculture, industry and sewage purification, and summarized ecology relationships between co-culture microorganisms. Joint mixed culture, sequence mixed culture and immobilized cells mixed culture have been used widely and lots of achievements have been made, for example, obtaining metabolites that are difficult to achieve or too low production in pure culture, transforming traditional fermentation industry, producing energy substance, improving substrate utilization ratio, expanding the scope of substrates and degrading toxic substances. Research reports indicate there are many ecology relationships between microorganisms, such as collaborative metabolism, induction effect, quorum sensing and gene transfer.

View Article and Find Full Text PDF

After initiation, leaves first undergo rapid cell proliferation. During subsequent development, leaf cells gradually exit the proliferation phase and enter the expansion stage, following a basipetally ordered pattern starting at the leaf tip. The molecular mechanism directing this pattern of leaf development is as yet poorly understood.

View Article and Find Full Text PDF

Microtubules are highly dynamic cytoskeletal polymers of α/β-tubulin heterodimers that undergo multiple post-translational modifications essential for various cellular functions in eukaryotes. The lysine 40 (K40) is largely conserved in α-tubulins in many eukaryote species, and the post-translational modification by acetylation at K40 is critical for neuronal development in vertebrates. However, the biological function of K40 of α-tubulins in plants remains unexplored.

View Article and Find Full Text PDF

The mitotic cell cycle in higher eukaryotes is of pivotal importance for organ growth and development. Here, we report that Elongator, an evolutionarily conserved histone acetyltransferase complex, acts as an important regulator of mitotic cell cycle to promote leaf patterning in Arabidopsis. Mutations in genes encoding Elongator subunits resulted in aberrant cell cycle progression, and the altered cell division affects leaf polarity formation.

View Article and Find Full Text PDF

In plants, cell proliferation and polarized cell differentiation along the adaxial-abaxial axis in the primordium is critical for leaf morphogenesis, while the temporal-spatial relationships between these two processes remain largely unexplored. Here, it is reported that microRNA396 (miR396)-targeted Arabidopsis growth-regulating factors (AtGRFs) are required for leaf adaxial-abaxial polarity in Arabidopsis. Reduction of the expression of AtGRF genes by transgenic miR396 overexpression in leaf polarity mutants asymmetric leaves1 (as1) and as2 resulted in plants with enhanced leaf adaxial-abaxial defects, as a consequence of reduced cell proliferation.

View Article and Find Full Text PDF