Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the phloem cap region of Arabidopsis plants, sulfur-rich cells (S-cells) accumulate >100 mM glucosinolates (GLS), but are biosynthetically inactive. The source and route of S-cell-bound GLS remain elusive. In this study, using single-cell sampling and scanning electron microscopy with energy-dispersive X-ray analysis we show that two GLS importers, NPF2.10/GTR1 and NPF2.11/GTR2, are critical for GLS accumulation in S-cells, although they are not localized in the S-cells. Comparison of GLS levels in S-cells in multiple combinations of homo- and heterografts of gtr1 gtr2, biosynthetic null mutant and wild-type plants indicate that S-cells accumulate GLS via symplasmic connections either directly from neighboring biosynthetic cells or indirectly to non-neighboring cells expressing GTR1/2. Distinct sources and transport routes exist for different types of GLS, and vary depending on the position of S-cells in the inflorescence stem. Based on these findings, we propose a model illustrating the GLS transport routes either directly from biosynthetic cells or via GTR-mediated import from apoplastic space radially into a symplasmic domain, wherein the S-cells are the ultimate sink. Similarly, we observed accumulation of the cyanogenic glucoside defensive compounds in high-turgor cells in the phloem cap of Lotus japonicus, suggesting that storage of defensive compounds in high-turgor cells may be a general mechanism for chemical protection of the phloem cap.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2019.06.008DOI Listing

Publication Analysis

Top Keywords

phloem cap
16
cells phloem
8
inflorescence stem
8
s-cells accumulate
8
gls
8
biosynthetic cells
8
transport routes
8
defensive compounds
8
compounds high-turgor
8
high-turgor cells
8

Similar Publications

The root system of plants is a vital part for successful development and adaptation to different soil types and environments. A major determinant of the shape of a plant root system is the formation of lateral roots, allowing for expansion of the root system. Arabidopsis thaliana, with its simple root anatomy, has been extensively studied to reveal the genetic program underlying root branching.

View Article and Find Full Text PDF

SYNAPTOTAGMIN 4 is expressed mainly in the phloem and participates in abiotic stress tolerance in Arabidopsis.

Front Plant Sci

July 2024

Department of Experimental Plant Biology, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia.

Plant synaptotagmins structurally resemble animal synaptotagmins and extended-synaptotagmins. Animal synaptotagmins are well-characterized calcium sensors in membrane trafficking, and extended-synaptotagmins mediate lipid transfer at the endoplasmic reticulum-plasma membrane contact sites. Here, we characterize , which belongs to the six-member family in Arabidopsis.

View Article and Find Full Text PDF

Yellow Dwarf Viruses of Cereals: Taxonomy and Molecular Mechanisms.

Annu Rev Phytopathol

August 2022

Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA; email:

Yellow dwarf viruses are the most economically important and widespread viruses of cereal crops. Although they share common biological properties such as phloem limitation and obligate aphid transmission, the replication machinery and associated -acting signals of these viruses fall into two unrelated taxa represented by and . Here, we explain the reclassification of these viruses based on their very different genomes.

View Article and Find Full Text PDF

Manganese distribution in the Mn-hyperaccumulator Grevillea meisneri from New Caledonia.

Sci Rep

December 2021

Laboratoire de Chimie Bio-Inspirée et d'Innovations Écologiques, ChimEco, UMR 5021, CNRS-Université de Montpellier, Cap Delta, 1682 Rue de la Valsière, 34790, Grabels, France.

New Caledonian endemic Mn-hyperaccumulator Grevillea meisneri is useful species for the preparation of ecocatalysts, which contain Mn-Ca oxides that are very difficult to synthesize under laboratory conditions. Mechanisms leading to their formation in the ecocatalysts are unknown. Comparing tissue-level microdistribution of these two elements could provide clues.

View Article and Find Full Text PDF

Reconstruction of lateral root formation through single-cell RNA sequencing reveals order of tissue initiation.

Mol Plant

August 2021

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingenier

Postembryonic organogenesis is critical for plant development. Underground, lateral roots (LRs) form the bulk of mature root systems, yet the ontogeny of the LR primordium (LRP) is not clear. In this study, we performed the single-cell RNA sequencing through the first four stages of LR formation in Arabidopsis.

View Article and Find Full Text PDF