Publications by authors named "Cristina Reche"

In today's rapidly evolving society, the sources of atmospheric particulate matter (PM) emissions are shifting significantly. Stringent regulations on vehicle tailpipe emissions, in combination with a lack of control of non-exhaust vehicular emissions, have led to an increase in the relative contribution of non-exhaust PM in Europe. This study analyzes the spatial distribution, temporal trends, and impacts of brake wear PM pollution across Europe by modeling copper (Cu) concentrations at a high spatial resolution of ∼250 m which is a key tracer of brake-wear emissions.

View Article and Find Full Text PDF

Atmospheric particulate matter (PM), as a leading part of air pollution, affects health in many ways. Thus, identifying and quantifying the contribution of atmospheric particulate matter sources of PM is vital for developing effective air quality management strategies. Positive Matrix Factorization (PMF) is one of the most common methods for source apportionment.

View Article and Find Full Text PDF

There is a body of evidence that ultrafine particles (UFP, those with diameters ≤ 100 nm) might have significant impacts on health. Accordingly, identifying sources of UFP is essential to develop abatement policies. This study focuses on urban Europe, and aims at identifying sources and quantifying their contributions to particle number size distribution (PNSD) using receptor modelling (Positive Matrix Factorization, PMF), and evaluating long-term trends of these source contributions using the non-parametric Theil-Sen's method.

View Article and Find Full Text PDF

Although many studies have discussed the impact of Europe's air quality, very limited research focused on the detailed phenomenology of ambient trace elements (TEs) in PM in urban atmosphere. This study compiled long-term (2013-2022) measurements of speciation of ambient urban PM from 55 sites of 7 countries (Switzerland, Spain, France, Greece, Italy, Portugal, UK), aiming to elucidate the phenomenology of 20 TEs in PM in urban Europe. The monitoring sites comprised urban background (UB, n = 26), traffic (TR, n = 10), industrial (IN, n = 5), suburban background (SUB, n = 7), and rural background (RB, n = 7) types.

View Article and Find Full Text PDF

Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on how to accurately measure equivalent black carbon (eBC) concentrations using filter absorption photometers (FAPs) by understanding the mass absorption cross-section (MAC).
  • Researchers analyzed data from 22 different sites to compare various methods for calculating MAC, leading to different classifications of eBC such as LeBC, MeBC, and ReBC, with significant differences observed in measurement outcomes.
  • Results showed that MAC varies by site and season, influencing the observed trends in elemental carbon (EC), revealing a need for careful MAC consideration when interpreting eBC data to reduce uncertainty in measurements.
View Article and Find Full Text PDF

This study addressed the scarcity of NH measurements in urban Europe and the diverse monitoring protocols, hindering direct data comparison. Sixty-nine datasets from Finland, France, Italy, Spain, and the UK across various site types, including industrial (IND, 8), traffic (TR, 12), urban (UB, 22), suburban (SUB, 12), and regional background (RB, 15), are analyzed to this study. Among these, 26 sites provided 5, or more, years of data for time series analysis.

View Article and Find Full Text PDF

Understanding the atmospheric processes involving carbonaceous aerosols (CAs) is crucial for assessing air pollution impacts on human health and climate. The sources and formation mechanisms of CAs are not well understood, making it challenging to quantify impacts in models. Studies suggest residential wood combustion (RWC) and traffic significantly contribute to CAs in Europe's urban and rural areas.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) play a crucial role in the formation of ozone (O) and secondary organic aerosol (SOA). We conducted measurements of VOC ambient mixing ratios during both summer and winter at two stations: a Barcelona urban background station (BCN) and the Montseny rural background station (MSY). Subsequently, we employed positive matrix factorization (PMF) to analyze the VOC mixing ratios and identify their sources.

View Article and Find Full Text PDF

Organic aerosols (OA) have recently been shown to be the dominant contributor to the oxidative potential of airborne particulate matter in northeastern Spain. We collected PM filter samples every fourth day from January 2017 to March 2018 at two sampling stations located in Barcelona city and Montseny Natural Park, representing urban and rural areas, respectively. The chemical composition of PM was analyzed offline using a broad set of analytical instruments, including high-resolution time-of-flight mass spectrometry (HR-ToF-AMS), a total organic carbon analyzer (TCA), inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), ion chromatography (IC), and thermal-optical carbon analyzer.

View Article and Find Full Text PDF

This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated.

View Article and Find Full Text PDF
Article Synopsis
  • This study examined variations in equivalent black carbon (eBC) levels across urban Europe to assess its potential as a key air quality indicator, collecting data from various measurement stations from 2006 to 2022.
  • The findings emphasized the necessity for standardization in eBC measurements for better comparisons, revealing a decreasing trend in eBC levels from traffic zones to suburban and regional areas, with Southern cities generally having higher concentrations than those in the North.
  • Additionally, fossil fuel combustion, particularly from traffic, was identified as the primary source of eBC, and while there was an overall decreasing trend in eBC levels over the decade, some cities showed stable or slightly rising concentrations.
View Article and Find Full Text PDF

This work aimed to characterize the physicochemical, film-forming properties, and 3D printability of a nonconventional starch from chachafruto. The chachafruto native starch (CHS) presented an excellent extraction yield (10 % db) and purity (99 % db), along with an oval and round morphology, a smooth surface with few defects, and a mean diameter of 15.4 μm.

View Article and Find Full Text PDF
Article Synopsis
  • Source apportionment (SA) techniques, like Positive Matrix Factorization (PMF), are crucial for determining the origins of air pollutants and can help shape effective air quality strategies.
  • This study utilized a multi-time resolution (MTR) PMF approach by analyzing various air quality measurements taken over a year in Barcelona, including particulate matter and black carbon at different time intervals.
  • The MTR-PMF method identified eight distinct sources of pollution, surpassing the capabilities of traditional methods, by combining high and low time resolution data, which enhanced source differentiation and understanding of daily patterns.
View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed hourly particle number size distributions (PNSD) from 26 European sites and 1 in the US to understand urban ultrafine particles and their air quality impacts.
  • Findings show that particle number concentrations (PNC) are highest in traffic areas compared to urban background and suburban locations, with noticeable increases as one moves from Northern to Southern Europe.
  • Recommendations highlight the need for specific PNSD monitoring to accurately assess the health effects of nanoparticles, with calls for standardized measurement practices to ensure comparability across different sites.
View Article and Find Full Text PDF
Article Synopsis
  • Athletes are exposed to high levels of air pollutants due to their intense breathing during events, but existing sports governing bodies lack proper guidelines for managing these risks.
  • The study deployed air quality sensors in six international stadia to monitor various pollutants and environmental conditions, revealing insights into the origins and patterns of pollution.
  • The collected data can help optimize scheduling for athletic events and training by identifying the best times to minimize athletes' exposure to harmful air quality.
View Article and Find Full Text PDF

PM was collected during an EMEP winter campaign of 2017-2018 in two urban background sites in Barcelona (BCN) and Granada (GRA), two Mediterranean cities in the coast and inland, respectively. The concentrations of PM, organic carbon (OC), elemental carbon (EC), and organic molecular tracer compounds such as hopanes, anhydro-saccharides, polycyclic aromatic hydrocarbon, and several biogenic and anthropogenic markers of secondary organic aerosols (SOA) were two times higher in GRA compared to BCN and related to the atmospheric mixing heights in the areas. Multivariate curve resolution (MCR-ALS) source apportionment analysis identified primary emissions sources (traffic + biomass burning) that were responsible for the 50% and 20% of the organic aerosol contributions in Granada and Barcelona, respectively.

View Article and Find Full Text PDF

In this work, time-series analyses of the chemical composition and source contributions of PM from an urban background station in Barcelona (BCN) and a rural background station in Montseny (MSY) in northeastern Spain from 2009 to 2018 were investigated and compared. A multisite positive matrix factorization analysis was used to compare the source contributions between the two stations, while the trends for both the chemical species and source contributions were studied using the Theil-Sen trend estimator. Between 2009 and 2018, both stations showed a statistically significant decrease in PM concentrations, which was driven by the downward trends of levels of chemical species and anthropogenic source contributions, mainly from heavy oil combustion, mixed combustion, industry, and secondary sulfate.

View Article and Find Full Text PDF

Valorization of an artichoke by-product, rich in bioactive compounds, by ultrasound-assisted extraction, is proposed. The extraction yield curves of total phenolic content (TPC) and chlorogenic acid content (CAC) in 20% ethanol () with agitation (100 rpm) and ultrasound (200 and 335 W/L) were determined at 25, 40, and 60 °C. A mathematical model considering simultaneous diffusion and convection is proposed to simulate the extraction curves and to quantify both temperature and ultrasound power density effects in terms of the model parameters variation.

View Article and Find Full Text PDF

Biomass burning (BB) including forest, bush, prescribed fires, agricultural fires, residential wood combustion, and power generation has long been known to affect climate, air quality and human health. With this work we supply a systematic review on the health effects of BB emissions in the framework of the WHO activities on air pollution. We performed a literature search of online databases (PubMed, ISI, and Scopus) from year 1980 up to 2020.

View Article and Find Full Text PDF

Portable miniaturised scanning mobility particle sizer (SMPS) instruments measuring atmospheric particles within the 10-241 nm size range were used to track particle number size distributions and concentrations during near-simultaneous pedestrian, bicycle, bus, car, tram and subway commuting journeys in Barcelona, Spain on 4th-6th July 2018. The majority of particles in this size range were <100 nm, with k-means cluster analysis identifying peaks at 15-22 nm, 30-40 nm, and 45-75 nm. Around 10-25% of the particles measured however were >100 nm (especially in the subway environment) and so lie outside the commonly defined range of "ultrafine" particles (UFP, or <100 nm particles).

View Article and Find Full Text PDF

Lockdown measures came into force in Spain from March 14th, two weeks after the start of the SARS-CoV-2 epidemic, to reduce the epidemic curve. Our study aims to describe changes in air pollution levels during the lockdown measures in the city of Barcelona (NE Spain), by studying the time evolution of atmospheric pollutants recorded at the urban background and traffic air quality monitoring stations. After two weeks of lockdown, urban air pollution markedly decreased but with substantial differences among pollutants.

View Article and Find Full Text PDF

Potential adverse consequences of exposure to air pollutants during exercise include decreased lung function, and exacerbation of asthma and exercise-induced bronchoconstriction. These effects are especially relevant for athletes and during international competitions, as they may impact athletic performance. Thus, assessing and mitigating exposure to air pollutants during exercising should be encouraged in sports venues.

View Article and Find Full Text PDF

Ultrafine particles (UFP) are suspected of having significant impacts on health. However, there have only been a limited number of studies on sources of UFP compared to larger particles. In this work, we identified and quantified the sources and processes contributing to particle number size distributions (PNSD) using Positive Matrix Factorization (PMF) at six monitoring stations (four urban background and two street canyon) from four European cities: Barcelona, Helsinki, London, and Zurich.

View Article and Find Full Text PDF