98%
921
2 minutes
20
Volatile organic compounds (VOCs) play a crucial role in the formation of ozone (O) and secondary organic aerosol (SOA). We conducted measurements of VOC ambient mixing ratios during both summer and winter at two stations: a Barcelona urban background station (BCN) and the Montseny rural background station (MSY). Subsequently, we employed positive matrix factorization (PMF) to analyze the VOC mixing ratios and identify their sources. Our analysis revealed five common sources: anthropogenic I (traffic & industries); anthropogenic II (traffic & biomass burning); isoprene oxidation; monoterpenes; long-lifetime VOCs. To assess the impact of these VOCs on the formation of secondary pollutants, we calculated the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAP) associated with each VOC. In conclusion, our study provides insights into the sources of VOCs and their contributions to the formation of ozone and SOA in NE Spain. The OFP was primarily influenced by anthropogenic aromatic compounds from the traffic & industries source at BCN (38-49 %) and during winter at MSY (34 %). In contrast, the summer OFP at MSY was primarily driven by biogenic contributions from monoterpenes and isoprene oxidation products (45 %). Acetaldehyde (10-35 %) and methanol (13-14 %) also made significant OFP contributions at both stations. Anthropogenic aromatic compounds originating from traffic, industries, and biomass burning played a dominant role (88-93 %) in SOA formation at both stations during both seasons. The only exception was during the summer at MSY, where monoterpenes became the primary driver of SOA formation (41 %). These findings emphasize the importance of considering both anthropogenic and biogenic VOCs in air quality management strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.167159 | DOI Listing |
Nat Prod Res
September 2025
Shaanxi Jinhuifang Traditional Chinese Medicine Technology Co., Ltd., Zhenba, China.
Rhamnosyl Icariside II, a rare secondary flavonoid glycoside in , exhibits superior stability and bioactivity than the primary flavonoid glycosides. Converting primary flavonoid glycoside into Rhamnosyl Icariside II is desirable due to separate extraction methods are inefficient. In this study, a recyclable biphasic enzymatic hydrolysis process of extracts to produce high purity RIc was established and optimised.
View Article and Find Full Text PDFClin Transl Oncol
September 2025
Spanish Society of Medical Oncology (SEOM) Thrombosis and Cancer Group, Madrid, Spain.
Purpose: To determine the real-world incidence and predictive factors for venous and arterial thromboembolic events (VTE/AT) in ovarian cancer patients treated with poly-(ADP-ribose) polymerase inhibitors (iPARP).
Methods/patients: A multicenter retrospective study involving 329 ovarian cancer patients who initiated iPARP treatment between January 2015 and December 2022. The primary outcome was the incidence of VTE/AT.
J Hazard Mater
August 2025
Department of Environmental Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea; Interdisciplinary Program in Earth Environmental System Science & Engineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea; Gangwon particle pollution res
This study evaluates the oxidative potential (OP) of PM and its chemical drivers across three contrasting environments in South Korea: a residential area, a cement factory, and a charcoal kiln facility. Mass-normalized OP (OPm, reflecting intrinsic particle reactivity) ranged from 9.5 to 13.
View Article and Find Full Text PDFG3 (Bethesda)
September 2025
Norwegian University of Life Sciences, 1433 Ås, Norway.
Fungi are pivotal in transitioning to a bio-based, circular economy due to their ability to transform organic material into valuable products such as organic acids, enzymes, and drugs. Mucor circinelloides is a model organism for studying lipogenesis and is particularly promising for its metabolic capabilities in producing oils like TAGs and carotenoids, influenced by environmental factors such as nutrient availability. Notably, strains VI04473 and FRR5020 have been identified for their potential in producing single-cell oils and carotenoids, respectively.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Cross-electrophile coupling (XEC) reactions are considered to be among the most fundamental construction of carbon-carbon bonds in organic chemistry. Traditionally, stoichiometric reductants, including metallic and organic reagents, are required to promote these conversions, resulting in significant waste that contributes to environmental pollution and increased disposal costs. In this study, we report a divided electrochemical synthesis-based cross-coupling platform in which HO is oxidized at the anode surface to generate electrons that produce a lower oxidation state nickel catalyst on the cathode surface, enabling XEC reactions without the need for metallic or organic reagents.
View Article and Find Full Text PDF