Fungi are pivotal in transitioning to a bio-based, circular economy due to their ability to transform organic material into valuable products such as organic acids, enzymes, and drugs. Mucor circinelloides is a model organism for studying lipogenesis and is particularly promising for its metabolic capabilities in producing oils like TAGs and carotenoids, influenced by environmental factors such as nutrient availability. Notably, strains VI04473 and FRR5020 have been identified for their potential in producing single-cell oils and carotenoids, respectively.
View Article and Find Full Text PDFChromosomal inversions play a crucial role in evolution by influencing phenotypes through the linkage of coadapted alleles. While inversions have been found across a large number of taxa, mapping and characterizing inversion breakpoint regions remain challenging, often due to the presence of complex tandem repeats and transposable elements. Here, we identify and quantify transposable elements in the breakpoints of the four large-scale inversions previously reported in Atlantic cod, leveraging on three high-quality long-read-based reference genome assemblies for the Norwegian Coastal cod, the Northeast Arctic cod, and Celtic cod ecotypes.
View Article and Find Full Text PDFNat Ecol Evol
April 2022
Supergenes are sets of genes that are inherited as a single marker and encode complex phenotypes through their joint action. They are identified in an increasing number of organisms, yet their origins and evolution remain enigmatic. In Atlantic cod, four megabase-scale supergenes have been identified and linked to migratory lifestyle and environmental adaptations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2021
A fundamental problem for the evolution of pregnancy, the most specialized form of parental investment among vertebrates, is the rejection of the nonself-embryo. Mammals achieve immunological tolerance by down-regulating both major histocompatibility complex pathways (MHC I and II). Although pregnancy has evolved multiple times independently among vertebrates, knowledge of associated immune system adjustments is restricted to mammals.
View Article and Find Full Text PDFNew genes can arise through duplication of a pre-existing gene or de novo from non-coding DNA, providing raw material for evolution of new functions in response to a changing environment. A prime example is the independent evolution of antifreeze glycoprotein genes (afgps) in the Arctic codfishes and Antarctic notothenioids to prevent freezing. However, the highly repetitive nature of these genes complicates studies of their organization.
View Article and Find Full Text PDFUnderstanding the genetic basis of adaptation is one of the main enigmas of evolutionary biology. Among vertebrates, hemoglobin has been well documented as a key trait for adaptation to different environments. Here, we investigate the role of hemoglobins in adaptation to ocean depth in the diverse teleost order Gadiformes, with species distributed at a wide range of depths varying in temperature, hydrostatic pressure and oxygen levels.
View Article and Find Full Text PDFEffective population size (N(e)) is a key parameter to understand evolutionary processes and the viability of endangered populations as it determines the rate of genetic drift and inbreeding. Low Ne can lead to inbreeding depression and reduced population adaptability. In this study, we estimated contemporary N(e) using genetic estimators (LDNE, ONeSAMP, MLNE and CoNe) as well as a demographic estimator in a natural insular house sparrow metapopulation.
View Article and Find Full Text PDF