Publications by authors named "Chul Hee Min"

This study aims to evaluate feasibility of the two-dimensional dynamic MLC (2DDMLC) technique through analytical and experimental investigations, focusing on its potential to improve intensity-modulated radiation therapy (IMRT). The leaf motion calculator (LMC), which calculates the leaf motion of the MLC during the treatment, was developed to obtain the MLC sequence including the bank's movement and anticipate the actual fluence delivery. The effect of the y-axis MLC motion was evaluated by calculating the actual fluence distributions from the optimal fluence maps.

View Article and Find Full Text PDF

Identifying the microscopic nature of non-equilibrium energy transfer mechanisms among electronic, spin, and lattice degrees of freedom is central to understanding ultrafast phenomena such as manipulating magnetism on the femtosecond timescale. Here, we use time- and angle-resolved photoemission spectroscopy to go beyond the often-used ensemble-averaged view of non-equilibrium dynamics in terms of quasiparticle temperature evolutions. We show for ferromagnetic Ni that the non-equilibrium electron and spin dynamics display pronounced variations with electron momentum, whereas the magnetic exchange interaction remains isotropic.

View Article and Find Full Text PDF

Purpose: The current protocol for use of the image-guided adaptive brachytherapy (IGABT) procedure entails transport of a patient between the treatment room and the 3-D tomographic imaging room after implantation of the applicators in the body, which movement can cause position displacement of the applicator. Moreover, it is not possible to track 3-D radioactive source movement inside the body, even though there can be significant inter- and intra-fractional patient-setup changes. In this paper, therefore, we propose an online single-photon emission computed tomography (SPECT) imaging technique with a combined C-arm fluoroscopy X-ray system and attachable parallel-hole collimator for internal radioactive source tracking of every source position in the applicator.

View Article and Find Full Text PDF

. The TOol for PArticle Simulation (TOPAS) is a Geant4-based Monte Carlo software application that has been used for both research and clinical studies in medical physics. So far, most users of TOPAS have focused on radiotherapy-related studies, such as modeling radiation therapy delivery systems or patient dose calculation.

View Article and Find Full Text PDF

Time-resolved momentum microscopy provides insight into the ultrafast interplay between structural and electronic dynamics. Here we extend orbital tomography into the time domain in combination with time-resolved momentum microscopy at a free-electron laser (FEL) to follow transient photoelectron momentum maps of excited states of a bilayer pentacene film on Ag(110). We use optical pump and FEL probe pulses by keeping FEL source conditions to minimize space charge effects and radiation damage.

View Article and Find Full Text PDF

Purpose: Tetrahedral mesh (TM)-based computational human phantoms have recently been developed for evaluation of exposure dose with the merit of precisely representing human anatomy and the changing posture freely. However, conversion of recently developed TM phantoms to the Digital Imaging and Communications in Medicine (DICOM) file format, which can be utilized in the clinic, has not been attempted. The aim of this study was to develop a technique, called TET2DICOM, to convert the TM phantoms to DICOM datasets for accurate treatment planning.

View Article and Find Full Text PDF

Monte Carlo (MC) simulations play an important role in radiotherapy, especially as a method to evaluate physical properties that are either impossible or difficult to measure. For example, MC simulations (MCSs) are used to aid in the design of radiotherapy devices or to understand their properties. The aim of this article is to review the MC method for device simulations in radiation therapy.

View Article and Find Full Text PDF

The present study verified and evaluated the dosimetric effects of protons scattered from a snout and an aperture in clinical practice, when a range compensator was included. The dose distribution calculated by a treatment planning system (TPS) was compared with the measured dose distribution and the dose distribution calculated by Monte Carlo simulation at several depths. The difference between the measured and calculated results was analyzed using Monte Carlo simulation with filtration of scattering in the snout and aperture.

View Article and Find Full Text PDF

Samarium hexaboride is a candidate for the topological Kondo insulator state, in which Kondo coherence is predicted to give rise to an insulating gap spanned by topological surface states. Here we investigate the surface and bulk electronic properties of magnetically alloyed Sm_{1-x}M_{x}B_{6} (M=Ce, Eu), using angle-resolved photoemission spectroscopy and complementary characterization techniques. Remarkably, topologically nontrivial bulk and surface band structures are found to persist in highly modified samples with up to 30% Sm substitution and with an antiferromagnetic ground state in the case of Eu doping.

View Article and Find Full Text PDF

An accurate knowledge of in vivo proton dose distribution is key to fully utilizing the potential advantages of proton therapy. Two representative indirect methods for in vivo range verification, namely, prompt gamma (PG) imaging and positron emission tomography (PET), are available. This study proposes a PG-PET system that combines the advantages of these two methods and presents detector geometry and background reduction techniques optimized for the PG-PET system.

View Article and Find Full Text PDF

In this study, we validated the feasibility of an energy weighted algorithm that highlights a characteristic area including the Compton edge as a single peak in a proof-of-principle radiation portal monitor system with a plastic scintillator measuring 50 × 100 × 5 cm. We measured the energy weighted spectra with steel shielding and the dynamic movements of the Cs and Co sources. The results showed that the peak locations of each source could be identified under shielded or dynamic motion conditions, each within a maximum difference of 0.

View Article and Find Full Text PDF

The leaf width of a multileaf collimator (MLC) determines the dose conformity to the target volume. The objective of this study was to investigate the feasibility of a two-dimensional dynamic MLC (2DDMLC) to improve the treatment plan quality with a fixed leaf width. The treatment head of the Clinac linear accelerator with the Millennium 120 MLC was modelled with the Geant4 (for GEometry ANd Tracking) tollkit using the Monte Carlo (MC) method.

View Article and Find Full Text PDF

Since higher dose delivered to a semiconductor leads to more functional loss to the device, accurate dose evaluation of the semiconductor is very important to reduce the defect rate during x-ray inspection. The aim of this study is to develop the technique to accurately evaluate the absorbed dose to the semiconductor using the Monte Carlo method. The x-ray radiographic system was modeled based on the Geant4 Monte Carlo tool-kit.

View Article and Find Full Text PDF

This study aims to evaluate the annual effective dose from a sleeping mattress containing naturally occurring radioactive material (NORM). In this study, the dose rate was measured using two different portable radiation detectors, namely the Geiger Müller (GM) tube and portable high-purity germanium (HPGe) detector; the annual effective dose was calculated using annualized usage of the products, and the equivalent does was evaluated via Monte Carlo (MC) simulation and using the model of the human body, which is known as a computational human phantom. The dose rate of the product, excluding background radiation at the shielded room, was measured as 0.

View Article and Find Full Text PDF

Incorrect prediction of skin dose in external beam radiotherapy (EBR) can have normal tissue complication such as acute skin desquamation and skin necrosis. The absorbed dose of skin should be evaluated within basal layer, placed between the epidermis and dermis layers. However, current treatment planning systems (TPS) cannot correctly define the skin layer because of the limitation of voxel resolution in computed tomography (CT).

View Article and Find Full Text PDF

Purpose: The complex beam delivery techniques for patient treatment using a clinical linear accelerator (linac) may result in variations in the photon spectra, which can lead to dosimetric differences in patients that cannot be accounted for by current treatment planning systems (TPSs). Therefore, precise knowledge of the fluence and energy spectrum (ES) of the therapeutic beam is very important. However, owing to the high energy and flux of the beam, the ES cannot be measured directly, and validation of the spectrum modeled in the TPS is difficult.

View Article and Find Full Text PDF
Article Synopsis
  • TaAs and TaP are recognized as Weyl semimetals, but understanding their surface features and Fermi arcs related to their bulk Weyl points has been a challenge.
  • * The study combines linear dichroism in angle-resolved photoemission with first-principles calculations to investigate the orbital texture on the Fermi surface of TaP(001).
  • * The researchers identify distinct changes in orbital texture at Weyl nodes, demonstrating the importance of orbital degrees of freedom in connecting surface and bulk properties in Weyl semimetals.*
View Article and Find Full Text PDF

Despite the improvements in the dose calculation models of the commercial treatment planning systems (TPS), their ability to accurately predict patient dose is still limited. One of the limitations is caused by the simplified model of the multileaf collimator (MLC). The aim of this study was to develop a Monte Carlo (MC) method-based independent patient dose validation system with an elaborate MLC model for more accurate dose evaluation.

View Article and Find Full Text PDF

Background: To measure the absorbed dose rate to water and penumbra of a Gamma Knife® (GK) using a polymethyl metacrylate (PMMA) phantom.

Methods: A multi-purpose PMMA phantom was developed to measure the absorbed dose rate to water and the dose distribution of a GK. The phantom consists of a hemispherical outer phantom, one exchangeable cylindrical chamber-hosting inner phantom, and two film-hosting inner phantoms.

View Article and Find Full Text PDF

Leksell GammaPlan was specifically designed for Gamma Knife (GK) radiosurgery planning, but it has limited accuracy for estimating the dose distribution in inhomogeneous areas, such as the embolization of arteriovenous malformations. We aimed to develop an independent patient dose validation system based on a patient-specific model, constructed using a DICOM-RT interface and the Geant4 toolkit. Leksell Gamma Knife Perfexion was designed in Geant4.

View Article and Find Full Text PDF

The aim of this study is to develop the Effective Dose Calculation Program (EDCP) for the usage of Naturally Occurring Radioactive Material (NORM) added consumer products. The EDCP was developed based on a database of effective dose conversion coefficient and the Matrix Laboratory (MATLAB) program to incorporate a Graphic User Interface (GUI) for ease of use. To validate EDCP, the effective dose calculated with EDCP by manually determining the source region by using the GUI and that by using the reference mathematical algorithm were compared for pillow, waist supporter, eye-patch and sleeping mattress.

View Article and Find Full Text PDF

Paramagnetic heavy fermion insulators consist of fully occupied quasiparticle bands inherent to Fermi liquid theory. The gap emergence below a characteristic temperature is the ultimate sign of coherence for a many-body system, which in addition can induce a non-trivial band topology. Here, we demonstrate a simple and efficient method to compare a model study and an experimental result for heavy fermion insulators.

View Article and Find Full Text PDF

For the independent validation of treatment plans, we developed a fully automated Monte Carlo (MC)-based patient dose calculation system with the tool for particle simulation (TOPAS) and proton therapy machine installed at the National Cancer Center in Korea to enable routine and automatic dose recalculation for each patient. The proton beam nozzle was modeled with TOPAS to simulate the therapeutic beam, and MC commissioning was performed by comparing percent depth dose with the measurement. The beam set-up based on the prescribed beam range and modulation width was automated by modifying the vendor-specific method.

View Article and Find Full Text PDF

After the Fukushima accident in Japan, the Korean Government implemented the "Act on Protective Action Guidelines Against Radiation in the Natural Environment" to regulate unnecessary radiation exposure to the public. However, despite the law which came into effect in July 2012, an appropriate method to evaluate the equivalent and effective doses from naturally occurring radioactive material (NORM) in consumer products is not available. The aim of the present study is to develop and validate an effective dose coefficient database enabling the simple and correct evaluation of the effective dose due to the usage of NORM-added consumer products.

View Article and Find Full Text PDF

Purpose: While positron emission tomography (PET) allows for the imaging of tissues activated by proton beams in terms of monitoring the therapy administered, most endogenous tissue elements are activated by relatively high-energy protons. Therefore, a relatively large distance off-set exists between the dose fall-off and activity fall-off. However, O(p,2p,2n) N has a relatively low energy threshold which peaks around 12 MeV and also a residual proton range that is approximately 1 to 2 mm.

View Article and Find Full Text PDF