A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development of a novel program for conversion from tetrahedral-mesh-based phantoms to DICOM dataset for radiation treatment planning: TET2DICOM. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Tetrahedral mesh (TM)-based computational human phantoms have recently been developed for evaluation of exposure dose with the merit of precisely representing human anatomy and the changing posture freely. However, conversion of recently developed TM phantoms to the Digital Imaging and Communications in Medicine (DICOM) file format, which can be utilized in the clinic, has not been attempted. The aim of this study was to develop a technique, called TET2DICOM, to convert the TM phantoms to DICOM datasets for accurate treatment planning.

Materials And Methods: The TM phantoms were sampled in voxel form to generate the DICOM computed tomography images. The DICOM-radiotherapy structure was defined based on the contour data. To evaluate TET2DICOM, the shape distortion of the TM phantoms during the conversion process was assessed, and the converted DICOM dataset was implemented in a commercial treatment planning system (TPS).

Results: The volume difference between the TM phantoms and the converted DICOM dataset was evaluated as less than about 0.1% in each organ. Subsequently, the converted DICOM dataset was successfully implemented in MIM (MIM Software Inc., Cleveland, USA, version 6.5.6) and RayStation (RaySearch Laboratories, Stockholm, Sweden, version 5.0). Additionally, the various possibilities of clinical application of the program were confirmed using a deformed TM phantom in various postures.

Conclusion: In conclusion, the TM phantom, currently the most advanced computational phantom, can be implemented in a commercial TPS and this technique can enable various TM-based applications, such as evaluation of secondary cancer risk in radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803294PMC
http://dx.doi.org/10.1002/acm2.13448DOI Listing

Publication Analysis

Top Keywords

dicom dataset
16
converted dicom
12
phantoms dicom
8
treatment planning
8
dataset implemented
8
implemented commercial
8
phantoms
7
dicom
7
development novel
4
novel program
4

Similar Publications