The fall armyworm (Spodoptera frugiperda), a lepidopteran pest of highly destructive, has developed resistance to organophosphate and carbamate insecticides through target-site mutations, including A201S and F290V in the ace-1 gene encoding acetylcholinesterase (AChE). Developing rapid and reliable methods to detect these mutations is crucial for monitoring resistance and guiding effective management strategies. Although S.
View Article and Find Full Text PDFRNA interference (RNAi) is being used to develop methods to control pests, yet its widespread application is limited by the high comprehensive application cost of dsRNAs. Here, we utilized the high identity matching between double-stranded RNA (dsRNA) and nontarget genes to achieve expanding the dsRNA insecticidal spectrum. First, we found that dsRNA was more likely to induce off-target effects in genes with higher transcript levels and higher sequence identity; the existence of either a completely contiguous matching sequence exceeding 15 nt or a partially contiguous matching sequence of 24 nt between genes can lead to off-target effects in .
View Article and Find Full Text PDFInsect Biochem Mol Biol
February 2025
Pestic Biochem Physiol
May 2024
The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera, Noctuidae), is a highly polyphagous invasive pest that damages various crops.
View Article and Find Full Text PDFJ Agric Food Chem
January 2024
Double-stranded RNA (dsRNA) pesticides, those based on RNA interference (RNAi) technology utilizing dsRNA, have shown potential for pest control. However, the off-target effects of dsRNA pose limitations to the widespread application of RNAi and raise concerns regarding potential side effects on other beneficial organisms. The precise impact and underlying factors of these off-target effects are still not well understood.
View Article and Find Full Text PDFEmamectin benzoate (EB), a derivative of avermectin, is the primary insecticide used to control the fall armyworm (FAW) in China. However, the specific molecular targets of EB against FAW remain unclear. In this study, we cloned the glutamate-gated chloride channel (GluCl) gene, which is known to be a primary molecular target for avermectin.
View Article and Find Full Text PDFBackground: The fall armyworm (FAW), Spodoptera frugiperda is the main destructive pest of grain crops, and has led to substantial economic losses worldwide. Chemical pesticides are the most effective way to manage FAW. Here, a laboratory test using an artificial diet-incorporated assay was conducted to determine the toxicity of five insecticides and the joint effect of the binary combination insecticides to FAW larvae.
View Article and Find Full Text PDFInsect Biochem Mol Biol
January 2022
Histamine-gated chloride channels (HACls) mediate fast inhibitory neurotransmission in invertebrate nervous systems and have important roles in light reception, color processing, temperature preference and light-dark cycle. The fall armyworm, Spodoptera frugiperda is a main destructive pest of grain and row crops. However, the pharmacological characterization of HACls in S.
View Article and Find Full Text PDFThe ionotropic γ-aminobutyric acid (iGABA) receptor is commonly considered as a fast inhibitory channel and is an important insecticide target. Since 1990, RDL, LCCH3, and GRD have been successively isolated and found to be potential subunits of the insect iGABA receptor. More recently, one orphan gene named 8916 was found and considered to be another potential iGABA receptor subunit according to its amino acid sequence.
View Article and Find Full Text PDFThe olfactory system is used by insects to find hosts, mates, and oviposition sites. Insects have different types of olfactory proteins, including odorant-binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs), and sensory neuron membrane proteins (SNMPs) to perceive chemical cues from the environment. The greater wax moth, , is an important lepidopteran pest of apiculture.
View Article and Find Full Text PDFThe resistance to dieldrin gene (RDL) encodes the primary subunit of the insect ionotropic γ-aminobutyric acid (GABA) receptor (GABAR), which is the target of phenylpyrazole and isoxazoline insecticides. The splice variants in exons 3 and 6 of RDL, which have been widely explored in many insects, modulate the agonist potency of the homomeric RDL GABAR and potentially play an important role in the development of insects. In the present study, four splice variants of exon 9 were identified in RDL of the small brown planthopper, Laodelphax striatellus (LsRDL), resulting in LsRDL-9a, LsRDL-9a', LsRDL-9b, and LsRDL-9c.
View Article and Find Full Text PDFPest Manag Sci
November 2019
Background: Fluralaner, a novel pesticide that targets the γ-aminobutyric acid (GABA) receptor (GABAR) subunit of resistant to dieldrin (RDL), exhibits strong potential to be an insecticide to control agricultural insect pests. However, the risk and action of fluralaner to economic insects, e.g.
View Article and Find Full Text PDFIonotropic γ-aminobutyric acid (GABA) receptors (GABARs) mediate rapid inhibitory neurotransmission in both vertebrates and invertebrates, and are important molecular targets of insecticides. However, components of insect GABARs remain elusive. In addition to CsRDL1 and CsRDL2, the complementary DNAs (cDNAs) of another two GABA receptor-like subunits, CsLCCH3 and Cs8916, were identified from the rice striped stem borer, Chilo suppressalis Walker in the present study.
View Article and Find Full Text PDFThe ionotropic GABA receptor (GABAR) is the main fast inhibitory post-synaptic receptor and is also an important insecticidal target. Effect of insecticides on fish has attracted intensive attention. However, no systematic study on heteromeric zebrafish GABAR expressed in oocytes has been reported to date.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2018
The increasing occurrence of resistance to chemical insecticides in insect pest populations is a serious threat to the integrity of current pest management strategies, and exploring new alternative chemistries is one important way to overcome this obstacle. Fluralaner, as a novel isoxazoline insecticide, has broad spectrum activity against a variety of insect pests, but little data is available about its effect on Lepidopterans. The effects of fluralaner on Spodoptera litura Fabricius, a widespread and polyphagous pest, were evaluated in the present study.
View Article and Find Full Text PDFBackground: Phenylpyrazole (fiprole) insecticides, including ethiprole, fipronil and flufiprole with excellent activity on rice planthoppers, are very important in Asia but resistance has developed after decades of use. The molecular mechanism of fipronil- but not ethiprole-resistance has been previously studied in rice planthoppers. In our laboratory, a small brown planthopper Laodelphax striatellus strain with ethiprole-resistance was cultured and the molecular mechanisms of ethiprole resistance and of cross-resistance among fiprole insecticides were investigated.
View Article and Find Full Text PDFInsect γ-aminobutyric acid (GABA) receptor (GABAR) is one of the major targets of insecticides. In the present study, cDNAs (CsRDL1A and CsRDL2S) encoding the two isoforms of RDL subunits were cloned from the rice stem borer Chilo suppressalis. Transcripts of both genes demonstrated similar expression patterns in different tissues and developmental stages, although CsRDL2S was ∼2-fold more abundant than CsRDL1A throughout all development stages.
View Article and Find Full Text PDFFluralaner is a novel isoxazoline insecticide which shows high insecticidal activity against parasitic, sanitary and agricultural pests, but there is little information about the effect of fluralaner on non-target organisms. This study reports the acute toxicity, bioconcentration, elimination and antioxidant response of fluralaner in zebrafish. All LC values of fluralaner to zebrafish were higher than 10 mg L at 24, 48, 72 and 96 h.
View Article and Find Full Text PDF