Publications by authors named "Caroline Ashley"

Unlabelled: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates canonical cell entry via ACE2 and has also been implicated as an activator of a diverse range of signaling pathways. Here, we present evidence that the RGD (Arg-Gly-Asp) motif within the receptor-binding domain (RBD) of the S1 fragment of the S protein induces TGF-β cytokine expression. RGD peptides are well characterized as ligands for a subset of integrin complexes primarily containing α5 and αV subunits.

View Article and Find Full Text PDF

The coronavirus disease-19 pandemic has intensified interest in the global diversity of RNA viruses and their ability to jump hosts, with a notable expansion in the number of known betacoronaviruses in wild mammalian species, particularly bats. This has enabled vaccine development research to shift its focus to include a range of severe acute respiratory syndrome coronavirus-1 and severe acute respiratory syndrome coronavirus-2 related viruses from animal species, with the intention of developing broadly protective coronavirus vaccines and therapeutics. However, there is currently a lack of synthesis of this expanding knowledge base of viruses with potential to cause another severe disease outbreak.

View Article and Find Full Text PDF

Next-generation vaccines are essential to address the evolving nature of SARS-CoV-2 and to protect against emerging pandemic threats from other coronaviruses. These vaccines should elicit broad protection, provide long-lasting immunity and ensure equitable access for all populations. In this study, we developed a panel of chimeric, full-length spike antigens incorporating mutations from previous, circulating and predicted SARS-CoV-2 variants.

View Article and Find Full Text PDF

A multiplexed, lentivirus-based pseudovirus neutralisation assay (pVNT) was developed for high-throughput measurement of neutralising antibodies (nAbs) against three distinct SARS-CoV-2 spike variants. Intra-assay variability was minimised by optimising the plate layout and determining an optimal percentage transduction for the pseudovirus inoculum. Comparison of EC titres between single and multiplexed pVNT assays showed no significant differences, indicating reliability of the multiplexed assay.

View Article and Find Full Text PDF

Background: Glioblastoma (GB) is a lethal and aggressive brain tumour. While molecular characteristics of GB is studied extensively, the aetiology of GB remains uncertain. The interest in exploring viruses as a potential contributor to the development of GB stems from the notion that viruses are known to play a key role in pathogenesis of other human cancers such as cervical cancer.

View Article and Find Full Text PDF

Despite concerted efforts to tackle the COVID-19 pandemic, the persistent transmission of SARS-CoV-2 demands continued research into novel vaccination strategies to combat the virus. In light of this, intranasally administered peptide vaccines, particularly those conjugated to an immune adjuvant to afford so-called "self-adjuvanted vaccines", remain underexplored. Here, we describe the synthesis and immunological evaluation of self-adjuvanting peptide vaccines derived from epitopes of the spike glycoprotein of SARS-CoV-2 covalently fused to the potent adjuvant, PamCys, that targets toll-like receptor 2 (TLR2).

View Article and Find Full Text PDF

Delta inulin, or Advax, is a polysaccharide vaccine adjuvant that significantly enhances vaccine-mediated immune responses against multiple pathogens and was recently licensed for use in the coronavirus disease 2019 (COVID-19) vaccine SpikoGen. Although Advax has proven effective as an immune adjuvant, its specific binding targets have not been characterized. In this report, we identify a cellular receptor for Advax recognition.

View Article and Find Full Text PDF

Objectives: SARS-CoV-2 infection causes a spectrum of clinical disease presentation, ranging from asymptomatic to fatal. While neutralising antibody (NAb) responses correlate with protection against symptomatic and severe infection, the contribution of the T-cell response to disease resolution or progression is still unclear. As newly emerging variants of concern have the capacity to partially escape NAb responses, defining the contribution of individual T-cell subsets to disease outcome is imperative to inform the development of next-generation COVID-19 vaccines.

View Article and Find Full Text PDF

Introduction: The antigen presentation molecule MHC class I related protein-1 (MR1) is best characterized by its ability to present bacterially derived metabolites of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells).

Methods: Through in vitro human cytomegalovirus (HCMV) infection in the presence of MR1 ligand we investigate the modulation of MR1 expression. Using coimmunoprecipitation, mass spectrometry, expression by recombinant adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its family members as potential regulators of MR1 expression.

View Article and Find Full Text PDF

Multiple SARS-CoV-2 vaccine candidates have been approved for use and have had a major impact on the COVID-19 pandemic. There remains, however, a significant need for vaccines that are safe, easily transportable and protective against infection, as well as disease. Mucosal vaccination is favored for its ability to induce immune memory at the site of infection, making it appealing for SARS-CoV-2 vaccine strategies.

View Article and Find Full Text PDF

Current vaccines against SARS-CoV-2 substantially reduce mortality, but protection against infection is less effective. Enhancing immunity in the respiratory tract, via mucosal vaccination, may provide protection against infection and minimise viral spread. Here, we report testing of a subunit vaccine in mice, consisting of SARS-CoV-2 Spike protein with a TLR2-stimulating adjuvant (PamCys), delivered to mice parenterally or mucosally.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are RNA transcripts that are over 200 nucleotides and rarely encode proteins or peptides. They regulate gene expression and protein activities and are heavily involved in many cellular processes such as cytokine secretion in respond to viral infection. In severe COVID-19 cases, hyperactivation of the immune system may cause an abnormally sharp increase in pro-inflammatory cytokines, known as cytokine release syndrome (CRS), which leads to severe tissue damage or even organ failure, raising COVID-19 mortality rate.

View Article and Find Full Text PDF

Global control of COVID-19 will require the deployment of vaccines capable of inducing long-term protective immunity against SARS-CoV-2 variants. In this report, we describe an adjuvanted subunit candidate vaccine that affords elevated, sustained, and cross-variant SARS-CoV-2 neutralizing antibodies (NAbs) in multiple animal models. Alhydroxiquim-II is a Toll-Like Receptor (TLR) 7/8 small-molecule agonist chemisorbed on aluminum hydroxide (Alhydrogel).

View Article and Find Full Text PDF
Article Synopsis
  • The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in significant global health and social impacts, with the viral spike protein facilitating its entry into host cells.
  • Researchers have used mRNA display to select cyclic peptide ligands from vast libraries, identifying six high-affinity ligands that bind to the spike protein's receptor binding domain (RBD) with nanomolar affinities.
  • The best ligand has potential applications for detecting the spike protein and has revealed a new binding site, offering insights for future diagnostics and antiviral development.
View Article and Find Full Text PDF

The antigen-presenting molecule MR1 presents microbial metabolites related to vitamin B2 biosynthesis to mucosal-associated invariant T cells (MAIT cells). Although bacteria and fungi drive the MR1 biosynthesis pathway, viruses have not previously been implicated in MR1 expression or its antigen presentation. We demonstrate that several herpesviruses inhibit MR1 cell surface upregulation, including a potent inhibition by herpes simplex virus type 1 (HSV-1).

View Article and Find Full Text PDF

The critical role of interferons (IFNs) in mediating the innate immune response to cytomegalovirus (CMV) infection is well established. However, in recent years the functional importance of the IFN-independent antiviral response has become clearer. IFN-independent, IFN regulatory factor 3 (IRF3)-dependent interferon-stimulated gene (ISG) regulation in the context of CMV infection was first documented 20 years ago.

View Article and Find Full Text PDF

The antiviral activity of type I interferons (IFNs) is primarily mediated by interferon-stimulated genes (ISGs). Induction of ISG transcription is achieved when type I IFNs bind to their cognate receptor and activate the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathways. Recently it has become clear that a number of viruses are capable of directly upregulating a subset of ISGs in the absence of type I IFN production.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that causes life-threatening disease in immunocompromised and immunonaïve individuals. Type I interferons (IFNs) are crucial molecules in the innate immune response to HCMV and are also known to upregulate several components of the interchromosomal multiprotein aggregates collectively referred to as nuclear domain 10 (ND10). In the context of herpesvirus infection, ND10 components are known to restrict gene expression.

View Article and Find Full Text PDF

Objectives: Rituximab is effective in inducing remission in ANCA-associated vasculitis (AAV), with randomized evidence to support its use as four infusions of 375 mg/m(2) (the conventional lymphoma dosing schedule). As B cell depletion (BCD) appears to occur very rapidly after the first dose, we questioned the need for repeat dosing and adopted a standard single-dose protocol of 375 mg/m(2) to treat active AAV.

Methods: All consecutive cases with newly diagnosed or relapsing AAV for whom conventional immunosuppression was contraindicated or ineffective were enrolled.

View Article and Find Full Text PDF

HIV-positive patients are at increased risk of end-stage kidney disease (ESKD). Kidney transplantation (KT) is an established treatment modality for ESKD in the general population. Recent data have confirmed the feasibility of kidney transplantation in HIV-positive patients, and kidney transplantation is increasingly offered to ESKD patients with well-controlled HIV infection.

View Article and Find Full Text PDF