Publications by authors named "Matt D Johansen"

The COVID-19 pandemic has underscored the critical need for rapid and accurate diagnostic tools. Current methods, including Polymerase Chain Reaction and rapid antigen tests (RAT), have limitations in speed, sensitivity, and the requirement for specialized equipment and trained personnel. Nanotechnology, particularly upconversion nanoparticles (UCNPs), offer a promising alternative due to their unique optical properties.

View Article and Find Full Text PDF

Next-generation vaccines are essential to address the evolving nature of SARS-CoV-2 and to protect against emerging pandemic threats from other coronaviruses. These vaccines should elicit broad protection, provide long-lasting immunity and ensure equitable access for all populations. In this study, we developed a panel of chimeric, full-length spike antigens incorporating mutations from previous, circulating and predicted SARS-CoV-2 variants.

View Article and Find Full Text PDF

The incidence of non-tuberculous mycobacteria (NTM) is increasing globally, often surpassing the incidence of new tuberculosis (TB) cases in developed countries. Most NTM are environmental organisms; however, there are a number of opportunistic and pathogenic species that can cause severe infections in animals and humans. Many NTM are intrinsically resistant to anti-TB therapies and are incredibly difficult to treat, resulting in poor treatment outcomes for these patients.

View Article and Find Full Text PDF

Background: Preeclampsia is a complex pregnancy disorder characterized by the new onset of hypertension and organ dysfunction, often leading to significant maternal and fetal morbidity and mortality. Placental dysfunction is a hallmark feature of preeclampsia, which is often caused by inappropriate trophoblast cell function in association with oxidative stress, inflammation and/or pathological hypoxia. This study explores the role of oxidative stress in trophoblast cell-based models mimicking the preeclamptic placenta and evaluates potential therapeutic strategies targeting these mechanisms.

View Article and Find Full Text PDF

Tobacco smoking is prevalent across the world and causes numerous diseases. Cigarette smoke (CS) compromises immunity, yet little is known of the components of CS that impact T cell function. MR1 is a ubiquitous molecule that presents bacterial metabolites to MAIT cells, which are highly abundant in the lungs.

View Article and Find Full Text PDF

The incidence of infections due to nontuberculous mycobacteria (NTM) has increased rapidly in recent years, surpassing tuberculosis in developed countries. Due to inherent antimicrobial resistance, NTM infections are particularly difficult to treat with low cure rates. There is an urgent need to understand NTM pathogenesis and to develop novel therapeutic approaches for the treatment of NTM diseases.

View Article and Find Full Text PDF

TANK-binding kinase 1 (TBK1) is a key signalling component in the production of type-I interferons, which have essential antiviral activities, including against SARS-CoV-2. TBK1, and its homologue IκB kinase-ε (IKKε), can also induce pro-inflammatory responses that contribute to pathogen clearance. While initially protective, sustained engagement of type-I interferons is associated with damaging hyper-inflammation found in severe COVID-19 patients.

View Article and Find Full Text PDF

IL-33 is a proinflammatory cytokine thought to play a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). A recent clinical trial using an anti-IL-33 antibody showed a reduction in exacerbation and improved lung function in ex-smokers but not current smokers with COPD. This study aimed to understand the effects of smoking status on IL-33.

View Article and Find Full Text PDF

Introduction: The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss.

Results: RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif.

View Article and Find Full Text PDF

Excessive inflammation-associated coagulation is a feature of infectious diseases, occurring in such conditions as bacterial sepsis and COVID-19. It can lead to disseminated intravascular coagulation, one of the leading causes of mortality worldwide. Recently, type I interferon (IFN) signaling has been shown to be required for tissue factor (TF; gene name F3) release from macrophages, a critical initiator of coagulation, providing an important mechanistic link between innate immunity and coagulation.

View Article and Find Full Text PDF

The global burden of respiratory diseases is enormous, with many millions of people suffering and dying prematurely every year. The global COVID-19 pandemic witnessed recently, along with increased air pollution and wildfire events, increases the urgency of identifying the most effective therapeutic measures to combat these diseases even further. Despite increasing expenditure and extensive collaborative efforts to identify and develop the most effective and safe treatments, the failure rates of drugs evaluated in human clinical trials are high.

View Article and Find Full Text PDF

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can be asymptomatic or cause a disease (COVID-19) characterized by different levels of severity. The main cause of severe COVID-19 and death is represented by acute (or acute on chronic) respiratory failure and acute respiratory distress syndrome (ARDS), often requiring hospital admission and ventilator support.The molecular pathogenesis of COVID-19-related ARDS (by now termed c-ARDS) is still poorly understood.

View Article and Find Full Text PDF

Emerging variants of concern (VOCs) are threatening to limit the effectiveness of SARS-CoV-2 monoclonal antibodies and vaccines currently used in clinical practice; broadly neutralizing antibodies and strategies for their identification are therefore urgently required. Here we demonstrate that broadly neutralizing antibodies can be isolated from peripheral blood mononuclear cells of convalescent patients using SARS-CoV-2 receptor binding domains carrying epitope-specific mutations. This is exemplified by two human antibodies, GAR05, binding to epitope class 1, and GAR12, binding to a new epitope class 6 (located between class 3 and 5).

View Article and Find Full Text PDF

Infections caused by are difficult to treat due to its intrinsic resistance to most antibiotics. Formation of biofilms and the capacity of to survive inside host phagocytes further complicate eradication. Herein, we explored whether addition of a carbamate-linked group at the C25 position of rifamycin SV blocks enzymatic inactivation by Arr, an ADP-ribosyltransferase conferring resistance to rifampicin (RMP).

View Article and Find Full Text PDF

Multiple SARS-CoV-2 vaccine candidates have been approved for use and have had a major impact on the COVID-19 pandemic. There remains, however, a significant need for vaccines that are safe, easily transportable and protective against infection, as well as disease. Mucosal vaccination is favored for its ability to induce immune memory at the site of infection, making it appealing for SARS-CoV-2 vaccine strategies.

View Article and Find Full Text PDF

Current vaccines against SARS-CoV-2 substantially reduce mortality, but protection against infection is less effective. Enhancing immunity in the respiratory tract, via mucosal vaccination, may provide protection against infection and minimise viral spread. Here, we report testing of a subunit vaccine in mice, consisting of SARS-CoV-2 Spike protein with a TLR2-stimulating adjuvant (PamCys), delivered to mice parenterally or mucosally.

View Article and Find Full Text PDF

ESX type VII secretion systems are complex secretion machineries spanning across the mycobacterial membrane and play an important role in pathogenicity, nutrient uptake and conjugation. We previously reported the role of ESX-4 in modulating Mycobacterium abscessus intracellular survival. The loss of EccB4 was associated with limited secretion of two effector proteins belonging to the WXG-100 family, EsxU and EsxT, and encoded by the esx-4 locus.

View Article and Find Full Text PDF

Patients with chronic obstructive pulmonary disease (COPD) develop more severe coronavirus disease (COVID-19); however, it is unclear whether they are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and what mechanisms are responsible for severe disease. To determine whether SARS-CoV-2 inoculated primary bronchial epithelial cells (pBECs) from patients with COPD support greater infection and elucidate the effects and mechanisms involved. We performed single-cell RNA sequencing analysis on differentiated pBECs from healthy subjects and patients with COPD 7 days after SARS-CoV-2 inoculation.

View Article and Find Full Text PDF

Mycobacterium abscessus is a pathogenic non-tuberculous mycobacterium that possesses an intrinsic drug resistance profile. Several N-acetyltransferases mediate drug resistance and/or participate in M. abscessus virulence.

View Article and Find Full Text PDF

The molecular and cellular mechanisms associated with tissue degradation or regeneration in an infectious context are poorly defined. Herein, we explored the role of macrophages in orchestrating either tissue regeneration or degradation in zebrafish embryos pre-infected with the fish pathogen . Zebrafish were inoculated with different infectious doses of prior to fin resection.

View Article and Find Full Text PDF

Mycobacterium abscessus is an emerging and difficult-to-manage mycobacterial species that exhibits smooth (S) or rough (R) morphotypes. Disruption of glycopeptidolipid (GPL) production results in transition from S to R and severe lung disease. A structure-activity relationship study was undertaken to decipher the role of GPL glycosylation in morphotype transition and pathogenesis.

View Article and Find Full Text PDF

is a member of the non-tuberculous mycobacteria (NTM) group, responsible for chronic infections in individuals with cystic fibrosis (CF) or those otherwise immunocompromised. While viewed traditionally as an opportunistic pathogen, increasing research into in recent years has highlighted its continued evolution into a true pathogen. This is demonstrated through an extensive collection of virulence factors (VFs) possessed by this organism which facilitate survival within the host, particularly in the harsh environment of the CF lung.

View Article and Find Full Text PDF

Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed.

View Article and Find Full Text PDF