Publications by authors named "Kien Lam Ung"

Auxins are plant hormones that direct the growth and development of organisms on the basis of environmental cues. Indole-3-acetic acid (IAA) is the most abundant auxin in most plants. A variety of membrane transport proteins work together to distribute auxins.

View Article and Find Full Text PDF

Auxins are a group of phytohormones that control plant growth and development. Their crucial role in plant physiology has inspired development of potent synthetic auxins that can be used as herbicides. Phenoxyacetic acid derivatives are a widely used group of auxin herbicides in agriculture and research.

View Article and Find Full Text PDF

Auxins are a group of phytohormones that control plant growth and development . Their crucial role in plant physiology has inspired development of potent synthetic auxins that can be used as herbicides . Phenoxyacetic acid derivatives are a widely used group of auxin herbicides in agriculture and research.

View Article and Find Full Text PDF

Clonal propagation of plants by induction of adventitious roots (ARs) from stem cuttings is a requisite step in breeding programs. A major barrier exists for propagating valuable plants that naturally have low capacity to form ARs. Due to the central role of auxin in organogenesis, indole-3-butyric acid is often used as part of commercial rooting mixtures, yet many recalcitrant plants do not form ARs in response to this treatment.

View Article and Find Full Text PDF

Auxins are pivotal plant hormones that regulate plant growth and transmembrane polar auxin transport (PAT) direct patterns of development. The PIN-FORMED (PIN) family of membrane transporters mediate auxin export from the plant cell and play crucial roles in PAT. Here we describe the recently solved structures of PIN transporters, PIN1, PIN3, and PIN8, and also their mechanisms of substrate recognition and transport of auxin.

View Article and Find Full Text PDF

Auxin is a crucial plant hormone that controls a multitude of developmental processes. The directional movement of auxin between cells is largely facilitated by canonical PIN-FORMED proteins in the plasma membrane. In contrast, non-canonical PIN-FORMED proteins and PIN-LIKES proteins appear to reside mainly in the endoplasmic reticulum.

View Article and Find Full Text PDF

Numerous bacteria from different phylae can perform desulfurization reactions of organosulfur compounds. In these degradation or detoxification pathways, two-component flavin-dependent monooxygenases that use flavins (FMN or FAD) as a cofactor play important roles as they catalyse the first steps of these metabolic routes. The TdsC or DszC and MsuC proteins belong to this class of enzymes as they process dibenzothiophene (DBT) and methanesulfinate.

View Article and Find Full Text PDF

Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood.

View Article and Find Full Text PDF

Mycobacterium abscessus is a pathogenic non-tuberculous mycobacterium that possesses an intrinsic drug resistance profile. Several N-acetyltransferases mediate drug resistance and/or participate in M. abscessus virulence.

View Article and Find Full Text PDF

Mycobacteria possess a complex and waxy cell wall comprising a large panel of glycolipids. Among these, trehalose monomycolate (TMM) represents abundant and crucial components for the elaboration of the mycomembrane. TMM is synthesized in the cytoplasmic compartment and translocated across the inner membrane by the MmpL3 transporter.

View Article and Find Full Text PDF

Enhanced intracellular survival (Eis) proteins belonging to the superfamily of the GCN5-related N-acetyltransferases play important functions in mycobacterial pathogenesis. In Mycobacterium tuberculosis, Eis enhances the intracellular survival of the bacilli in macrophages by modulating the host immune response and is capable to chemically modify and inactivate aminoglycosides. In nontuberculous mycobacteria (NTM), Eis shares similar functions.

View Article and Find Full Text PDF

Trehalose monomycolate (TMM) represents an essential element of the mycobacterial envelope. While synthesized in the cytoplasm, TMM is transported across the inner membrane by MmpL3 but, little is known regarding the MmpL3 partners involved in this process. Recently, the TMM transport factor A (TtfA) was found to form a complex with MmpL3 and to participate in TMM transport, although its biological role remains to be established.

View Article and Find Full Text PDF

Mycobacterium abscessus is an emerging human pathogen that is notorious for being one of the most drug-resistant species of Mycobacterium. It has developed numerous strategies to overcome the antibiotic stress response, limiting treatment options and leading to frequent therapeutic failure. The panel of aminoglycosides (AG) usually used in the treatment of M.

View Article and Find Full Text PDF