Publications by authors named "Anneliese S Ashhurst"

UV-induced immune suppression contributes to skin carcinogenesis and may also explain how sunlight protects against nonskin autoimmune diseases, particularly multiple sclerosis. Narrowband UVB (NBUVB) phototherapy is an effective treatment for some skin diseases; however, its mechanism of action and its potential for treating diseases away from the skin are not well-understood. Solar-simulated UV modulates immune cells, in part, by altering lipids.

View Article and Find Full Text PDF

Despite concerted efforts to tackle the COVID-19 pandemic, the persistent transmission of SARS-CoV-2 demands continued research into novel vaccination strategies to combat the virus. In light of this, intranasally administered peptide vaccines, particularly those conjugated to an immune adjuvant to afford so-called "self-adjuvanted vaccines", remain underexplored. Here, we describe the synthesis and immunological evaluation of self-adjuvanting peptide vaccines derived from epitopes of the spike glycoprotein of SARS-CoV-2 covalently fused to the potent adjuvant, PamCys, that targets toll-like receptor 2 (TLR2).

View Article and Find Full Text PDF

Mild strategies for the selective modification of peptides and proteins are in demand for applications in therapeutic peptide and protein discovery, and in the study of fundamental biomolecular processes. Herein, we describe the development of an electrochemical selenoetherification (e-SE) platform for the efficient site-selective functionalization of polypeptides. This methodology utilizes the unique reactivity of the 21st amino acid, selenocysteine, to effect formation of valuable bioconjugates through stable selenoether linkages under mild electrochemical conditions.

View Article and Find Full Text PDF

Current vaccines against SARS-CoV-2 substantially reduce mortality, but protection against infection is less effective. Enhancing immunity in the respiratory tract, via mucosal vaccination, may provide protection against infection and minimise viral spread. Here, we report testing of a subunit vaccine in mice, consisting of SARS-CoV-2 Spike protein with a TLR2-stimulating adjuvant (PamCys), delivered to mice parenterally or mucosally.

View Article and Find Full Text PDF

The covalent fusion of immunostimulatory adjuvants to immunogenic antigens is a promising strategy for the development of effective synthetic vaccines for infectious diseases. Herein, we describe the conjugation of a mycobacterial peptide antigen from the 6 kDa early secretory antigenic target (ESAT6) to a suitably functionalised trehalose dibehenate (TDB), a potent glycolipid adjuvant targeting macrophage inducible C-type lectin (Mincle).

View Article and Find Full Text PDF

Antivirals that specifically target SARS-CoV-2 are needed to control the COVID-19 pandemic. The main protease (M) is essential for SARS-CoV-2 replication and is an attractive target for antiviral development. Here we report the use of the Random nonstandard Peptide Integrated Discovery (RaPID) mRNA display on a chemically cross-linked SARS-CoV-2 M dimer, which yielded several high-affinity thioether-linked cyclic peptide inhibitors of the protease.

View Article and Find Full Text PDF

At the 2021 Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) annual meeting, a summary of the research conducted by the recipients of the 2020 GRAPPA Research Awards was presented by the awardees. The summary of the 4 presentations is provided here.

View Article and Find Full Text PDF

Lipopeptides or lipoproteins show potential as safe and effective subunit vaccines for protection against bacterial pathogens. Provided suitable adjuvants are selected, such as the TLR2-stimulating molecules PamCys and PamCys, these may be formulated as inhalational vaccines to optimize localized pulmonary immune responses. Here, we present methods to assess antigen-specific memory lymphocyte responses to novel vaccines, with a focus on immune responses in the lung tissue and bronchoalveolar space.

View Article and Find Full Text PDF

Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is a promising drug target for novel antivirals against SARS-CoV-2. The marine natural product gallinamide A and several synthetic analogues were identified as potent inhibitors of cathepsin L with IC values in the picomolar range. Lead molecules possessed selectivity over other cathepsins and alternative host proteases involved in viral entry.

View Article and Find Full Text PDF
Article Synopsis
  • The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in significant global health and social impacts, with the viral spike protein facilitating its entry into host cells.
  • Researchers have used mRNA display to select cyclic peptide ligands from vast libraries, identifying six high-affinity ligands that bind to the spike protein's receptor binding domain (RBD) with nanomolar affinities.
  • The best ligand has potential applications for detecting the spike protein and has revealed a new binding site, offering insights for future diagnostics and antiviral development.
View Article and Find Full Text PDF

The contact system comprises a series of serine proteases that mediate procoagulant and proinflammatory activities the intrinsic pathway of coagulation and the kallikrein-kinin system, respectively. Inhibition of Factor XIIa (FXIIa), an initiator of the contact system, has been demonstrated to lead to thrombo-protection and anti-inflammatory effects in animal models and serves as a potentially safer target for the development of antithrombotics. Herein, we describe the use of the Randomised Nonstandard Peptide Integrated Discovery (RaPID) mRNA display technology to identify a series of potent and selective cyclic peptide inhibitors of FXIIa.

View Article and Find Full Text PDF
Article Synopsis
  • Tissue mononuclear phagocytes (MNP) play a crucial role in detecting pathogens and presenting antigens, with a focus on HIV transmission to CD4 T cells.
  • Previous studies primarily targeted epithelial MNPs, but this research highlights the importance of sub-epithelial MNPs, especially in the context of mucosal trauma and inflammation linked to HIV transmission.
  • The study identifies two specific subsets of sub-epithelial MNPs—CD14CD1c monocyte-derived dendritic cells and langerin-expressing conventional dendritic cells 2 (cDC2)—that are key in taking up HIV, becoming infected, and facilitating its transmission to CD4 T cells.
View Article and Find Full Text PDF

The global incidence of tuberculosis remains unacceptably high, with new preventative strategies needed to reduce the burden of disease. We describe here a method for the generation of synthetic self-adjuvanted protein vaccines and demonstrate application in vaccination against Two vaccine constructs were designed, consisting of full-length ESAT6 protein fused to the TLR2-targeting adjuvants PamCys-SK or PamCys-SK These were produced by chemical synthesis using a peptide ligation strategy. The synthetic self-adjuvanting vaccines generated powerful local CD4 T cell responses against ESAT6 and provided significant protection in the lungs from virulent aerosol challenge when administered to the pulmonary mucosa of mice.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 in late 2019, and the subsequent COVID-19 pandemic, has led to substantial mortality, together with mass global disruption. There is an urgent need for novel antiviral drugs for therapeutic or prophylactic application. Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is recognized as a promising drug target.

View Article and Find Full Text PDF

Interferon-γ (IFN-γ) is a glycoprotein that is responsible for orchestrating numerous critical immune induction and modulation processes and is used clinically for the treatment of a number of diseases. Herein, we describe the total chemical synthesis of homogeneously glycosylated variants of human IFN-γ using a tandem diselenide-selenoester ligation-deselenization strategy in the C- to N-terminal direction. The synthetic glycoproteins were successfully folded, and the structures and antiviral functions were assessed.

View Article and Find Full Text PDF

Tuberculosis (TB) remains a staggering burden on global public health. Novel preventative tools are desperately needed to reach the targets of the WHO post-2015 End-TB Strategy. Peptide or protein-based subunit vaccines offer potential as safe and effective generators of protection, and enhancement of local pulmonary immunity may be achieved by mucosal delivery.

View Article and Find Full Text PDF

T-lymphocytes are critical for protection against respiratory infections, such as and influenza virus, with chemokine receptors playing an important role in directing these cells to the lungs. CXCR6 is expressed by activated T-lymphocytes and its ligand, CXCL16, is constitutively expressed by the bronchial epithelia, suggesting a role in T-lymphocyte recruitment and retention. However, it is unknown whether CXCR6 is required in responses to pulmonary infection, particularly on CD4 T-lymphocytes.

View Article and Find Full Text PDF

Access to lipopeptide-based vaccines for immunological studies remains a significant challenge owing to the amphipathic nature of the molecules, which makes them difficult to synthesize and purify to homogeneity. Here, we describe the application of a new peptide ligation technology, the diselenide-selenoester ligation (DSL), to access self-adjuvanting glycolipopeptide vaccines. We show that rapid ligation of glyco- and lipopeptides is possible via DSL in mixed organic solvent-aqueous buffer and, when coupled with deselenization chemistry, affords rapid and efficient access to a vaccine candidate possessing a MUC1 glycopeptide epitope and the lipopeptide adjuvant PamCys.

View Article and Find Full Text PDF

Tuberculosis places a staggering burden on human health globally. The new World Health Organisation End-TB Strategy has highlighted the urgent need for more effective TB vaccines to improve control of the disease. Protein-based subunit vaccines offer potential as safe and effective generators of protective immunity, and the use of particulate vaccine formulation and delivery by the pulmonary route may enhance local immunogenicity.

View Article and Find Full Text PDF

Rifapentine is an anti-tuberculosis (anti-TB) drug with a prolonged half-life, but oral delivery results in low concentrations in the lungs because of its high binding (98%) to plasma proteins. We have shown that inhalation of crystalline rifapentine overcomes the limitations of oral delivery by significantly enhancing and prolonging the drug concentration in the lungs. The delivery of crystalline particles to the lungs may promote inflammation.

View Article and Find Full Text PDF