Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite concerted efforts to tackle the COVID-19 pandemic, the persistent transmission of SARS-CoV-2 demands continued research into novel vaccination strategies to combat the virus. In light of this, intranasally administered peptide vaccines, particularly those conjugated to an immune adjuvant to afford so-called "self-adjuvanted vaccines", remain underexplored. Here, we describe the synthesis and immunological evaluation of self-adjuvanting peptide vaccines derived from epitopes of the spike glycoprotein of SARS-CoV-2 covalently fused to the potent adjuvant, PamCys, that targets toll-like receptor 2 (TLR2). When administered intranasally, these vaccines elicited a strong antigen-specific CD4 and CD8 T-cell response in the lungs as well as high titers of IgG and IgA specific to the native spike protein of SARS-CoV-2. Unfortunately, serum and lung fluid from mice immunized with these vaccines failed to inhibit viral entry in spike-expressing pseudovirus assays. Following this, we designed and synthesized fusion vaccines composed of the T-cell epitope discovered in this work, covalently fused to epitopes of the receptor-binding domain of the spike protein reported to be neutralizing. While antibodies elicited against these fusion vaccines were not neutralizing, the T-cell epitope retained its ability to stimulate strong antigen-specific CD4 lymphocyte responses within the lungs. Given the Spike region is still completely conserved in SARS-CoV-2 variants of concern and variants of interest, we envision the self-adjuvanting vaccine platform reported here may inform future vaccine efforts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsinfecdis.4c00544DOI Listing

Publication Analysis

Top Keywords

peptide vaccines
8
covalently fused
8
strong antigen-specific
8
antigen-specific cd4
8
spike protein
8
fusion vaccines
8
t-cell epitope
8
vaccines
7
sars-cov-2
5
intranasal self-adjuvanted
4

Similar Publications

Cancer vaccines in hematologic malignancy: A systematic review of the rational and evidence for clinical use.

Best Pract Res Clin Haematol

September 2025

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, USA.

Immunotherapy, including immune checkpoint blockade, CART cells and bispecific antibodies have resulted in dramatic improvements in outcomes for patients with hematological malignancies, demonstrating the unique potency of the immune system in targeting malignant cells. The development of cancer vaccines aims to evoke an activated effector cell population and a memory response to provide long term immune surveillance to protect from relapse. Developing a potent cancer vaccine relies on identifying appropriate antigen targets, enhancing antigen presentation, and overcoming the immune suppressive milieu of the micro-environment.

View Article and Find Full Text PDF

Moraxella catarrhalis is a Gram-negative diplococcus bacterium and a common respiratory pathogen, implicated in 15-20% of otitis media (OM) cases in children and chronic obstructive pulmonary disease (COPD) in adults. The rise of drug-resistant Moraxella catarrhalis has highlighted the urgent need for the potent vaccine strategies to reduce its clinical burden. Despite a mortality rate of 13%, there is no FDA-approved vaccine for this pathogen.

View Article and Find Full Text PDF

Background: Canine parvovirus (CPV) poses a severe threat to canine health, necessitating the development of safer and more effective vaccines. While traditional vaccines carry risks of virulence reversion and environmental contamination, subunit vaccines-especially neutralizing epitope vaccines-offer promising alternatives by eliciting targeted immune responses with enhanced safety.

Methods: We employed bacterial display technology to express 11 overlapping CPV VP2 gene fragments on the periplasmic membrane of E.

View Article and Find Full Text PDF

Background: CD4 T cells play a critical role in the positive and negative regulation of cellular immunity through the many functional subsets they comprise. The progressive growth of immunogenic tumors which nonetheless generate mutation-specific T cells suggests that effective immune control may be avoided or suppressed at the level of the neoantigen-specific CD4 T-cell response. Despite their importance, little is known about the ontogeny, architecture, and development of the CD4 NeoAg-specific repertoire induced by progressively growing tumor.

View Article and Find Full Text PDF

Vaccines of enhanced range of protection could help to control newly emerging infectious diseases while providing greater resilience to any subsequent variants. Such "universal vaccines" are an idealized, but unrealized, goal that may benefit from unbiased, high-throughput approaches that define antibody cross-reactivity to enable rational selection of cross-protective epitopes. The priority of this investigation is to establish a pipeline for the identification and preliminary characterization of epitopes with enhanced cross-reactivity.

View Article and Find Full Text PDF