Publications by authors named "Hendra S Ismanto"

Introduction: The SARS-CoV-2 pandemic has had a widespread and severe impact on society, yet there have also been instances of remarkable recovery, even in critically ill patients.

Materials And Methods: In this study, we used single-cell RNA sequencing to analyze the immune responses in recovered and deceased COVID-19 patients during moderate and critical stages.

Results: Expanded T cell receptor (TCR) clones were predominantly SARS-CoV-2-specific, but represented only a small fraction of the total repertoire in all patients.

View Article and Find Full Text PDF

Liquid biopsies based on peripheral blood offer a minimally invasive alternative to solid tissue biopsies for the detection of diseases, primarily cancers. However, such tests currently consider only the serum component of blood, overlooking a potentially rich source of biomarkers: adaptive immune receptors (AIRs) expressed on circulating B and T cells. Machine learning-based classifiers trained on AIRs have been reported to accurately identify not only cancers but also autoimmune and infectious diseases as well.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 enters host cells through the spike receptor-binding domain (RBD) interacting with angiotensin-converting enzyme 2 (ACE2).
  • Certain human antibodies targeting the spike N-terminal domain (NTD) can increase ACE2 binding and enhance infection, acting differently than traditional antibody-dependent enhancement mechanisms.
  • The study provides structural models and evidence showing that these NTD-targeting infection-enhancing antibodies (NIEAs) work by crosslinking spike proteins, improving our understanding of their role in SARS-CoV-2 infection.
View Article and Find Full Text PDF

Determining antigen and epitope specificity is an essential step in the discovery of therapeutic antibodies as well as in the analysis adaptive immune responses to disease or vaccination. Despite extensive efforts, deciphering antigen specificity solely from BCR amino acid sequence remains a challenging task, requiring a combination of experimental and computational approaches. Here, we describe and experimentally validate a simple and straightforward approach for grouping antibodies that share antigen and epitope specificities based on their CDR sequence similarity.

View Article and Find Full Text PDF

To assess the frequency of SARS-CoV-2 infection in the general population, we searched over 64 million heavy chain antibody sequences from healthy unvaccinated, healthy BNT162b2 vaccinated and COVID-19 patient repertoires for sequences similar to 11 previously reported enhancing antibodies. Although the distribution of sequence identities was similar in all three groups of repertoires, the COVID-19 and healthy vaccinated hits were significantly more clonally expanded than healthy unvaccinated hits. Furthermore, among the tested hits, 17 out of 94 from COVID-19 and 9 out of 59 from healthy vaccinated, compared with only 2 out of 96 from healthy unvaccinated, bound to the enhancing epitope.

View Article and Find Full Text PDF

Antibody and TCR modeling are becoming important as more and more sequence data becomes available to the public. One of the pressing questions now is how to use such data to understand adaptive immune responses to disease. Infectious disease is of particular interest because the antigens driving such responses are often known to some extent.

View Article and Find Full Text PDF

Antibodies make up an important and growing class of compounds used for the diagnosis or treatment of disease. While traditional antibody discovery utilized immunization of animals to generate lead compounds, technological innovations have made it possible to search for antibodies targeting a given antigen within the repertoires of B cells in humans. Here we group these innovations into four broad categories: cell sorting allows the collection of cells enriched in specificity to one or more antigens; BCR sequencing can be performed on bulk mRNA, genomic DNA or on paired (heavy-light) mRNA; BCR repertoire analysis generally involves clustering BCRs into specificity groups or more in-depth modeling of antibody-antigen interactions, such as antibody-specific epitope predictions; validation of antibody-antigen interactions requires expression of antibodies, followed by antigen binding assays or epitope mapping.

View Article and Find Full Text PDF

The covalent fusion of immunostimulatory adjuvants to immunogenic antigens is a promising strategy for the development of effective synthetic vaccines for infectious diseases. Herein, we describe the conjugation of a mycobacterial peptide antigen from the 6 kDa early secretory antigenic target (ESAT6) to a suitably functionalised trehalose dibehenate (TDB), a potent glycolipid adjuvant targeting macrophage inducible C-type lectin (Mincle).

View Article and Find Full Text PDF

The SARS-CoV-2 S protein is a major point of interaction between the virus and the human immune system. As a consequence, the S protein is not a static target but undergoes rapid molecular evolution. In order to more fully understand the selection pressure during evolution, we examined residue positions in the S protein that vary greatly across closely related viruses but are conserved in the subset of viruses that infect humans.

View Article and Find Full Text PDF

B cell receptors (BCRs) and T cell receptors (TCRs) make up an essential network of defense molecules that, collectively, can distinguish self from non-self and facilitate destruction of antigen-bearing cells such as pathogens or tumors. The analysis of BCR and TCR repertoires plays an important role in both basic immunology as well as in biotechnology. Because the repertoires are highly diverse, specialized software methods are needed to extract meaningful information from BCR and TCR sequence data.

View Article and Find Full Text PDF

Background: Langerin, a C-type lectin receptor (CLR) expressed in a subset of dendritic cells (DCs), binds to glycan ligands for pathogen capture and clearance. Previous studies revealed that langerin has an unusual binding affinity toward 6-sulfated galactose (Gal), a structure primarily found in keratan sulfate (KS). However, details and biological outcomes of this interaction have not been characterized.

View Article and Find Full Text PDF