Publications by authors named "Caihong Zhu"

The intestinal barrier is essential for maintaining mucosal homeostasis, and its dysfunction, often mediated by aberrant nuclear factor-kappa B (NF-κB) activation, is closely linked to chronic inflammation. Dietary carbohydrates modulate this barrier primarily through microbial fermentation and metabolite-mediated signaling. This review synthesized current evidence on how carbohydrate structure, including degree of polymerization, branching, and chemical modifications, influenced gut microbiota, short-chain fatty acid (SCFAs) production, and NF-κB regulation.

View Article and Find Full Text PDF

Hydrogel-based materials exhibit great potential in tissue engineering. However, their mechanical weakness limits applications in hard tissue regeneration, especially under load-bearing conditions. Although various strengthening strategies have been applied, the achieved mechanical response of hydrogels still lags behind the mechanics of natural bone.

View Article and Find Full Text PDF

Dysregulated lipid metabolism in microglia represents a hallmark of neuroinflammation and is often observed in a variety of neurodegenerative diseases. The exact molecular mechanisms underlying the induction of altered lipid homeostasis and how it contributes to neurodegeneration remain to be deciphered. Progranulin (PGRN) is a lysosomal glycoprotein encoded by GRN.

View Article and Find Full Text PDF

Nucleus pulposus cells (NPCs) undergo metabolic disorders and matrix pathological remodeling under the influence of various adverse factors during intervertebral disc degeneration (IVDD), whereas post-translational modifications (PTMs) can confer cells with the capacity to respond quickly and adapt to complex environmental changes. Here, SIRT1 protein, a key regulator within PTMs framework, was applied against the hostile degenerative microenvironment. Then, it was sequentially assembled with SOX9-expressing plasmid, an essential transcription factor to promote extracellular matrix (ECM) biosynthesis, onto a phenylboronic acid-functionalized G5-dendrimer to construct a multifunctional nanoplatform for IVDD therapy.

View Article and Find Full Text PDF

The self-repair ability of articular cartilage is limited, which is one of the most difficult diseases to treat clinically. Kartogenin (KGN) induces chondrogenesis by regulating RUNX1 mRNA translation and the small molecule compound TD-198946 (TD) promotes chondrogenic differentiation of mesenchymal stem cells (MSCs) through increasing the transcription of RUNX1 mRNA. GelMA hydrogel and liposomes are respectively similar to the extracellular matrix (ECM) and extracellular vesicles (EVs).

View Article and Find Full Text PDF

Highly effective and broad-spectrum influenza vaccines are urgently required to prevent influenza outbreaks. Hemagglutinin (HA), M2 ectodomain (M2e), and nucleoprotein (NP) are crucial target antigens for the development of universal influenza vaccines. To generate a novel multivalent influenza vaccine, the HA genes of influenza B Yamagata (BY) and Victoria (BV) strains, and the NP gene of H1N1 were cloned into the E1 region of the chimpanzee adenoviral vector, AdC68, and M2e epitopes of H1N1 and H3N2 were fused to the loop region of the AdC68 fiber, resulting in the recombinant adenoviral vector vaccine, AdC-Flu-Tet.

View Article and Find Full Text PDF

In clinical scenarios, bone defects stemming from trauma, infections, degenerative diseases, or hereditary conditions necessitate considerable bone grafts. Researchers ardently focus on creating diverse biomaterials to expedite and enhance these intricate restorative processes. These biomaterials play a pivotal role in aiding osteogenesis and angiogenesis factors for reconstructing stable, fully developed bone tissue.

View Article and Find Full Text PDF

VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition.

View Article and Find Full Text PDF

This research delved into the feasibility of utilizing three nanochitin-chitin nanocrystal (CNC), chitin nanofiber (CNF), and chitin nanosphere (CNS) in complexation with whey protein isolate (WPI) to fabricate complex coacervation and create microcapsules for probiotic encapsulation. The results showed that CNC, CNF, and CNS exhibited notable differences in morphologies, dimensions, and properties due to the respective synthesis methodologies. Nevertheless, all of them maintained a positive charge and were capable of assembling into microcapsules with WPI via electrostatic interactions at optimal pHs.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring the role of stromal cells, such as fibroblasts, vascular endothelial cells (VECs), and smooth muscle cells (VSMCs), in the inflammation associated with psoriasis, a skin disease whose causes are not fully understood.
  • A comprehensive analysis of skin samples from psoriasis patients revealed distinct types of fibroblasts, VECs, and VSMCs that are more prevalent in lesional skin, indicating a shift towards inflammatory and angiogenesis-promoting activities in these cells.
  • The study concludes that the interactions between these stromal cells contribute to the pathological changes in psoriasis vulgaris, suggesting that targeting these cells may help improve the inflammatory environment associated with the disease.
View Article and Find Full Text PDF
Article Synopsis
  • Pemphigus vulgaris (PV) is a rare autoimmune skin disease, with its exact causes still not fully understood, prompting research into its underlying cellular mechanisms using advanced proteomic techniques like LC-MS/MS.
  • The study involved analyzing proteins extracted from skin biopsies of PV patients compared to healthy controls, identifying 880, 605, and 586 differentially expressed proteins across different skin conditions, with a particular focus on the activation of the oxidative phosphorylation (OXPHOS) pathway in keratinocytes.
  • Treatments with the OXPHOS inhibitor metformin and the JAK1 inhibitor tofacitinib showed promising effects by reducing cell separation caused by PV serum, underscoring the potential role of both the OXPH
View Article and Find Full Text PDF

Purpose: To investigate risk factors for falls in hospitalized older adults to justify the adoption of targeted nursing measures.

Method: Meta-analysis was used to synthesize national and international published studies on risk factors for falls in hospitalized older adults.

Results: A total of 10 studies were included.

View Article and Find Full Text PDF

Norovirus (NoV) infection is a major cause of gastroenteritis worldwide. The virus poses great challenges in developing vaccines with broad immune protection due to its genetic and antigenic diversity. To date, there are no approved NoV vaccines for clinical use.

View Article and Find Full Text PDF

Presently, the clinical treatment of intervertebral disc degeneration (IVDD) remains challenging, but the strategy of simultaneously overcoming the overactive inflammation and restoring the anabolic/catabolic balance of the extracellular matrix (ECM) in the nucleus pulposus (NP) has become an effective way to alleviate IVDD. IL-1ra, a natural antagonist against IL-1β, can mitigate inflammation and promote regeneration in IVDD. Chondroitin sulfate (CS), an important component of the NP, can promote ECM synthesis and delay IVDD.

View Article and Find Full Text PDF

Classic chimeric hemagglutinin (cHA) was designed to induce immune responses against the conserved stalk domain of HA. However, it is unclear whether combining more than one HA head domain onto one stalk domain is immunogenic and further induce immune responses against influenza viruses. Here, we constructed numerous novel cHAs comprising two or three fuzed head domains from different subtypes grafted onto one stalk domain, designated as cH1-H3, cH1-H7, cH1-H3-H7, and cH1-H7-H3.

View Article and Find Full Text PDF

Piezoelectric nanomaterials have become increasingly popular in the field of biomedical applications due to their high biocompatibility and ultrasound-mediated piezocatalytic properties. In addition, the ability of these nanomaterials to disaggregate amyloid proteins, which are responsible for a range of diseases resulting from the accumulation of these proteins in body tissues and organs, has recently gained considerable attention. However, the use of nanoparticles in biomedicine poses significant challenges, including targeting and uncontrolled aggregation.

View Article and Find Full Text PDF

The incidence of osteochondral defect is increasing year by year, but there is still no widely accepted method for repairing the defect. Hydrogels loaded with bioactive molecules have provided promising alternatives for in-situ osteochondral regeneration. Kartogenin (KGN) is an effective and steady small molecule with the function of cartilage regeneration and protection which can be further boosted by TGF-β.

View Article and Find Full Text PDF

Intervertebral disc degeneration (IVDD) is one of the main causes of low back pain. Although local delivery strategies using biomaterial carriers have shown potential for IVDD treatment, it remains challenging for intervention against multiple adverse contributors by a single delivery platform. In the present work, we propose a new functionalization strategy using vanillin, a natural molecule with anti-inflammatory and antioxidant properties, to develop multifunctional gelatin methacrylate (GelMA) microspheres for local delivery of transforming growth factor β3 (TGFβ3) toward IVDD treatment.

View Article and Find Full Text PDF

Cell sheet-based scaffold-free technology holds promise for tissue engineering applications and has been extensively explored during the past decades. However, efficient harvest and handling of cell sheets remain challenging, including insufficient extracellular matrix content and poor mechanical strength. Mechanical loading has been widely used to enhance extracellular matrix production in a variety of cell types.

View Article and Find Full Text PDF

The dynamic extracellular matrix (ECM) constantly affects the behaviors of cells. To mimic the dynamics of ECM with controllable stiffness and energy dissipation, this study proposes a strategy in which a small molecule, 3,4-dihydroxybenzaldehyde (DB), was used as fast "dynamic bridges'' to construct viscoelastic gelatin methacryloyl (GelMA)-based hydrogels. The storage modulus and loss modulus of hydrogels were independently adjusted by the covalent crosslinking density and by the number of dynamic bonds.

View Article and Find Full Text PDF

Background: The pathogenesis of chronic spontaneous urticaria (CSU) is unclear, and it turned out to be involved in biological processes, such as autoimmunity, autoallergy, inflammation, and coagulation. The gut microbiota plays an important role in immune and inflammatory diseases. However, the relationship between chronic spontaneous urticaria and the gut microbiota remains unknown.

View Article and Find Full Text PDF

The aim of this paper was to explore the synergistic mechanism of the novel Pickering emulsion gels stabilized by zein hydrolysate (ZH, low DH of 5%)-chitin nanocrystals (CNCs) coacervates, and investigate their improvement on the stability and bioaccessibility of curcumin. Interestingly, the ZH with low DH of 5% exhibited aggregated precipitation at pH 5.0.

View Article and Find Full Text PDF