A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Preparation and characterization of microcapsules and tablets for probiotic encapsulation via whey protein isolate-nanochitin complex coacervation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This research delved into the feasibility of utilizing three nanochitin-chitin nanocrystal (CNC), chitin nanofiber (CNF), and chitin nanosphere (CNS) in complexation with whey protein isolate (WPI) to fabricate complex coacervation and create microcapsules for probiotic encapsulation. The results showed that CNC, CNF, and CNS exhibited notable differences in morphologies, dimensions, and properties due to the respective synthesis methodologies. Nevertheless, all of them maintained a positive charge and were capable of assembling into microcapsules with WPI via electrostatic interactions at optimal pHs. The inclusion of Lactobacillus casei (L. casei) during the complex coacervation phase engendered a shell-like formation around the bacterium within the microcapsule, which enhanced probiotic viability and increased colony-forming unit count. Additionally, these probiotic-loading microcapsules were also processed into tablets, displaying robust structural integrity, augmented protective capabilities, and a distinctive sustained-release profile compared to the microcapsules alone. In summary, this study pioneered the employment of nanochitin formulations in complex coacervation to encapsulate L. casei, spearheading an innovative approach to the creation of a compressed probiotic supplement and contributing to the advancement in the design and fabrication of encapsulation vehicles for active ingredients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.138225DOI Listing

Publication Analysis

Top Keywords

complex coacervation
16
probiotic encapsulation
8
whey protein
8
microcapsules
5
preparation characterization
4
characterization microcapsules
4
microcapsules tablets
4
probiotic
4
tablets probiotic
4
encapsulation whey
4

Similar Publications