Publications by authors named "Andrew F Cheng"

Kinetic deflection is a planetary defense technique delivering spacecraft momentum to a small body to deviate its course from Earth. The deflection efficiency depends on the impactor and target. Among them, the contribution of global curvature was poorly understood.

View Article and Find Full Text PDF

Hypervelocity impacts play a significant role in the evolution of asteroids, causing material to be ejected and partially reaccreted. However, the dynamics and evolution of ejected material in a binary asteroid system have never been observed directly. Observations of Double Asteroid Redirection Test (DART) impact on asteroid Dimorphos have revealed features on a scale of thousands of kilometers, including curved ejecta streams and a tail bifurcation originating from the Didymos system.

View Article and Find Full Text PDF

Images collected during NASA's Double Asteroid Redirection Test (DART) mission provide the first resolved views of the Didymos binary asteroid system. These images reveal that the primary asteroid, Didymos, is flattened and has plausible undulations along its equatorial perimeter. At high elevations, its surface is rough and contains large boulders and craters; at low elevations its surface is smooth and possesses fewer large boulders and craters.

View Article and Find Full Text PDF

NASA’s Double Asteroid Redirection Test (DART) mission intentionally impacted the asteroid Dimorphos on September 26, 2022, and this kinetic impact changed Dimorphos’ orbit around its binary companion Didymos. This first planetary defense test explored technological readiness for this method of asteroid deflection.

View Article and Find Full Text PDF

The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact.

View Article and Find Full Text PDF

Some active asteroids have been proposed to be formed as a result of impact events. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA, in addition to having successfully changed the orbital period of Dimorphos, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions.

View Article and Find Full Text PDF

Although no known asteroid poses a threat to Earth for at least the next century, the catalogue of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid. A test of kinetic impact technology was identified as the highest-priority space mission related to asteroid mitigation.

View Article and Find Full Text PDF

The Double Asteroid Redirection Test (DART) spacecraft successfully performed the first test of a kinetic impactor for asteroid deflection by impacting Dimorphos, the secondary of near-Earth binary asteroid (65803) Didymos, and changing the orbital period of Dimorphos. A change in orbital period of approximately 7 min was expected if the incident momentum from the DART spacecraft was directly transferred to the asteroid target in a perfectly inelastic collision, but studies of the probable impact conditions and asteroid properties indicated that a considerable momentum enhancement (β) was possible. In the years before impact, we used lightcurve observations to accurately determine the pre-impact orbit parameters of Dimorphos with respect to Didymos.

View Article and Find Full Text PDF

Pluto, Titan, and Triton make up a unique class of solar system bodies, with icy surfaces and chemically reducing atmospheres rich in organic photochemistry and haze formation. Hazes play important roles in these atmospheres, with physical and chemical processes highly dependent on particle sizes, but the haze size distribution in reducing atmospheres is currently poorly understood. Here we report observational evidence that Pluto's haze particles are bimodally distributed, which successfully reproduces the full phase scattering observations from New Horizons.

View Article and Find Full Text PDF

Observations made during the New Horizons flyby provide a detailed snapshot of the current state of Pluto's atmosphere. Whereas the lower atmosphere (at altitudes of less than 200 kilometers) is consistent with ground-based stellar occultations, the upper atmosphere is much colder and more compact than indicated by pre-encounter models. Molecular nitrogen (N2) dominates the atmosphere (at altitudes of less than 1800 kilometers or so), whereas methane (CH4), acetylene (C2H2), ethylene (C2H4), and ethane (C2H6) are abundant minor species and likely feed the production of an extensive haze that encompasses Pluto.

View Article and Find Full Text PDF

NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse.

View Article and Find Full Text PDF

The dusty jovian ring system must be replenished continuously from embedded source bodies. The New Horizons spacecraft has performed a comprehensive search for kilometer-sized moons within the system, which might have revealed the larger members of this population. No new moons were found, however, indicating a sharp cutoff in the population of jovian bodies smaller than 8-kilometer-radius Adrastea.

View Article and Find Full Text PDF

Observations of Jupiter's nightside airglow (nightglow) and aurora obtained during the flyby of the New Horizons spacecraft show an unexpected lack of ultraviolet nightglow emissions, in contrast to the case during the Voyager flybys in 1979. The flux and average energy of precipitating electrons generally decrease with increasing local time across the nightside, consistent with a possible source region along the dusk flank of Jupiter's magnetosphere. Visible emissions associated with the interaction of Jupiter and its satellite Io extend to a surprisingly high altitude, indicating localized low-energy electron precipitation.

View Article and Find Full Text PDF

Although lightning has been seen on other planets, including Jupiter, polar lightning has been known only on Earth. Optical observations from the New Horizons spacecraft have identified lightning at high latitudes above Jupiter up to 80 degrees N and 74 degrees S. Lightning rates and optical powers were similar at each pole, and the mean optical flux is comparable to that at nonpolar latitudes, which is consistent with the notion that internal heat is the main driver of convection.

View Article and Find Full Text PDF

High-resolution images of the surface of asteroid Itokawa from the Hayabusa mission reveal it to be covered with unconsolidated millimeter-sized and larger gravels. Locations and morphologic characteristics of this gravel indicate that Itokawa has experienced considerable vibrations, which have triggered global-scale granular processes in its dry, vacuum, microgravity environment. These processes likely include granular convection, landslide-like granular migrations, and particle sorting, resulting in the segregation of the fine gravels into areas of potential lows.

View Article and Find Full Text PDF

The ranging instrument aboard the Hayabusa spacecraft measured the surface topography of asteroid 25143 Itokawa and its mass. A typical rough area is similar in roughness to debris located on the interior wall of a large crater on asteroid 433 Eros, which suggests a surface structure on Itokawa similar to crater ejecta on Eros. The mass of Itokawa was estimated as (3.

View Article and Find Full Text PDF

Several planetary missions have reported the presence of substantial numbers of energetic ions and electrons surrounding Jupiter; relativistic electrons are observable up to several astronomical units (au) from the planet. A population of energetic (>30[?]keV) neutral particles also has been reported, but the instrumentation was not able to determine the mass or charge state of the particles, which were subsequently labelled energetic neutral atoms. Although images showing the presence of the trace element sodium were obtained, the source and identity of the neutral atoms---and their overall significance relative to the loss of charged particles from Jupiter's magnetosphere---were unknown.

View Article and Find Full Text PDF