98%
921
2 minutes
20
Observations of Jupiter's nightside airglow (nightglow) and aurora obtained during the flyby of the New Horizons spacecraft show an unexpected lack of ultraviolet nightglow emissions, in contrast to the case during the Voyager flybys in 1979. The flux and average energy of precipitating electrons generally decrease with increasing local time across the nightside, consistent with a possible source region along the dusk flank of Jupiter's magnetosphere. Visible emissions associated with the interaction of Jupiter and its satellite Io extend to a surprisingly high altitude, indicating localized low-energy electron precipitation. These results indicate that the interaction between Jupiter's upper atmosphere and near-space environment is variable and poorly understood; extensive observations of the day side are no guide to what goes on at night.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1147613 | DOI Listing |
Nat Astron
April 2024
Leiden Observatory, University of Leiden, Leiden, The Netherlands.
Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST's Mid-Infrared Instrument.
View Article and Find Full Text PDFSci Rep
September 2023
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA.
Discs of plasma around giant planets are natural laboratories that contain within mechanisms of transferring and keeping energy into the plasma and magnetic field system. Various missions to Jovian planets observed that expansion of plasmadiscs is not adiabatic and plasma temperature is increasing with radial distance. Magnetometer measurements from Juno mission were examined to determine plausibility of turbulent fluctuations as the plasma heating mechanism.
View Article and Find Full Text PDFSpace Sci Rev
September 2023
Rhea Group, for European Space Agency, ESAC, Madrid, Spain.
ESA's Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere.
View Article and Find Full Text PDFNature
July 2023
ZAH Landessternwarte, Heidelberg, Germany.
The abundance of refractory elements in giant planets can provide key insights into their formation histories. Owing to the low temperatures of the Solar System giants, refractory elements condense below the cloud deck, limiting sensing capabilities to only highly volatile elements. Recently, ultra-hot giant exoplanets have allowed for some refractory elements to be measured, showing abundances broadly consistent with the solar nebula with titanium probably condensed out of the photosphere.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2019
Department of Earth Sciences, University of Cambridge, Downing St, Cambridge CB2 3EQ, UK.
The study of the composition of brown dwarf atmospheres helped to understand their formation and evolution. Similarly, the study of exoplanet atmospheres is expected to constrain their formation and evolutionary states. We use results from three-dimensional simulations, kinetic cloud formation and kinetic ion-neutral chemistry to investigate ionization processes that will affect their atmosphere chemistry: the dayside of super-hot Jupiters is dominated by atomic hydrogen, and not HO.
View Article and Find Full Text PDF