Kinetic deflection is a planetary defense technique delivering spacecraft momentum to a small body to deviate its course from Earth. The deflection efficiency depends on the impactor and target. Among them, the contribution of global curvature was poorly understood.
View Article and Find Full Text PDFNat Commun
February 2025
Hypervelocity impacts play a significant role in the evolution of asteroids, causing material to be ejected and partially reaccreted. However, the dynamics and evolution of ejected material in a binary asteroid system have never been observed directly. Observations of Double Asteroid Redirection Test (DART) impact on asteroid Dimorphos have revealed features on a scale of thousands of kilometers, including curved ejecta streams and a tail bifurcation originating from the Didymos system.
View Article and Find Full Text PDFImages collected during NASA's Double Asteroid Redirection Test (DART) mission provide the first resolved views of the Didymos binary asteroid system. These images reveal that the primary asteroid, Didymos, is flattened and has plausible undulations along its equatorial perimeter. At high elevations, its surface is rough and contains large boulders and craters; at low elevations its surface is smooth and possesses fewer large boulders and craters.
View Article and Find Full Text PDFNASA’s Double Asteroid Redirection Test (DART) mission intentionally impacted the asteroid Dimorphos on September 26, 2022, and this kinetic impact changed Dimorphos’ orbit around its binary companion Didymos. This first planetary defense test explored technological readiness for this method of asteroid deflection.
View Article and Find Full Text PDFThe NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact.
View Article and Find Full Text PDFSome active asteroids have been proposed to be formed as a result of impact events. Because active asteroids are generally discovered by chance only after their tails have fully formed, the process of how impact ejecta evolve into a tail has, to our knowledge, not been directly observed. The Double Asteroid Redirection Test (DART) mission of NASA, in addition to having successfully changed the orbital period of Dimorphos, demonstrated the activation process of an asteroid resulting from an impact under precisely known conditions.
View Article and Find Full Text PDFAlthough no known asteroid poses a threat to Earth for at least the next century, the catalogue of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid. A test of kinetic impact technology was identified as the highest-priority space mission related to asteroid mitigation.
View Article and Find Full Text PDFThe Double Asteroid Redirection Test (DART) spacecraft successfully performed the first test of a kinetic impactor for asteroid deflection by impacting Dimorphos, the secondary of near-Earth binary asteroid (65803) Didymos, and changing the orbital period of Dimorphos. A change in orbital period of approximately 7 min was expected if the incident momentum from the DART spacecraft was directly transferred to the asteroid target in a perfectly inelastic collision, but studies of the probable impact conditions and asteroid properties indicated that a considerable momentum enhancement (β) was possible. In the years before impact, we used lightcurve observations to accurately determine the pre-impact orbit parameters of Dimorphos with respect to Didymos.
View Article and Find Full Text PDFAsteroid (3200) Phaethon is an active near-Earth asteroid and the parent body of the Geminid Meteor Shower. Because of its small perihelion distance, Phaethon's surface reaches temperatures sufficient to destabilize hydrated materials. We conducted rotationally resolved spectroscopic observations of this asteroid, mostly covering the northern hemisphere and the equatorial region, beyond 2.
View Article and Find Full Text PDFRecent observations, including the discovery in typical asteroidal orbits of objects with cometary characteristics (main-belt comets, or MBCs), have blurred the line between comets and asteroids, although so far neither ice nor organic material has been detected on the surface of an asteroid or directly proven to be an asteroidal constituent. Here we report the spectroscopic detection of water ice and organic material on the asteroid 24 Themis, a detection that has been independently confirmed. 24 Themis belongs to the same dynamical family as three of the five known MBCs, and the presence of ice on 24 Themis is strong evidence that it also is present in the MBCs.
View Article and Find Full Text PDF