Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The dusty jovian ring system must be replenished continuously from embedded source bodies. The New Horizons spacecraft has performed a comprehensive search for kilometer-sized moons within the system, which might have revealed the larger members of this population. No new moons were found, however, indicating a sharp cutoff in the population of jovian bodies smaller than 8-kilometer-radius Adrastea. However, the search revealed two families of clumps in the main ring: one close pair and one cluster of three to five. All orbit within a brighter ringlet just interior to Adrastea. Their properties are very different from those of the few other clumpy rings known; the origin and nonrandom distribution of these features remain unexplained, but resonant confinement by Metis may play a role.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1147647DOI Listing

Publication Analysis

Top Keywords

ring system
8
clump detections
4
detections limits
4
limits moons
4
moons jupiter's
4
jupiter's ring
4
system dusty
4
dusty jovian
4
jovian ring
4
system replenished
4

Similar Publications

Alkynyl Prins Cyclizations for the Synthesis of Bicyclo[4.3.1] and [3.3.1] Oxygen-Bridged Heterocycles.

J Org Chem

September 2025

Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States.

This report presents the alkynyl -Prins cyclization of Achmatowicz adducts, enabling the synthesis of up to 24 (24) highly functionalized [4.3.1] and [3.

View Article and Find Full Text PDF

The long-term visualization of intracellular Fe dynamics and lysosomal activity is crucial for investigating the physiological roles and functions of lysosomes during the growth of organisms. The lysosome-targeted fluorescent probe (RBH-EdC), derived from rhodamine-nucleoside conjugates, demonstrates a sophisticated dual-activation design: one is Fe⁺ response, triggering spirolactam ring-opening to form xanthine structures, resulting in ≥ 1000-fold fluorescence enhancement with visible colorimetric transition (colorless→pink). Another is pH sensitivity, demonstrating protonation-dependent fluorescence amplification at the dC at site N3 (pK= 2.

View Article and Find Full Text PDF

Activation of peroxymonosulfate by Fenton-conditioned sludge-derived biochar for efficient degradation and detoxification of sulfamethoxazole: Reactive oxygen species dominated process.

Environ Res

September 2025

School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China. Electronic address: ho

The activation of peroxymonosulfate (PMS) by biochar has shown promising potential for the efficient degradation and detoxification of antibiotics in wastewater. However, the underlying mechanisms are not fully understood. In this study, Fenton-conditioned sludge-derived biochar (FSBC) was prepared by microwave pyrolysis to activate PMS for the efficient degradation and detoxification of sulfamethoxazole (SMX).

View Article and Find Full Text PDF

Hydroxychloroquine Toxicity with Short Duration of Hydroxychloroquine Use and Unilateral Bull's Eye Maculopathy.

Retin Cases Brief Rep

September 2025

Doheny Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, USA.

Purpose: To report the examination and multimodal imaging findings of a patient with unilateral bull's eye maculopathy.

Methods: A retrospective chart review of a 77-year-old patient with unilateral bull's eye maculopathy who presented to a tertiary retinal practice was performed. The patient's history, visual acuity, examination and multimodal imaging findings over five years of follow-up were described.

View Article and Find Full Text PDF

Voltage-dependence gating of ion channels underlies numerous physiological and pathophysiological processes, and disruption of normal voltage gating is the cause of many channelopathies. Here, long timescale atomistic simulations were performed to directly probe voltage-induced gating transitions of the big potassium (BK) channels, where the voltage sensor domain (VSD) movement has been suggested to be distinct from that of canonical Kv channels but remains poorly understood. Using a Core-MT construct without the gating ring, multiple voltage activation transitions were observed at 750 mV, allowing detailed analysis of the activated state of BK VSD and key mechanistic features.

View Article and Find Full Text PDF