We present a direct measurement of the nanoscale dynamics of plasma mirrors using wavefront measurement techniques. This two-dimensional measurement, performed via pump-probe diagnostics, enables the reconstruction of the three-dimensional plasma mirror surface with nanometer axial, micrometer transverse, and femtosecond temporal resolution.
View Article and Find Full Text PDFUsing the spectral interferometry technique, we measured subpicosecond time-resolved pre-plasma scale lengths and early expansion (<12 ps) of the plasma produced by a high intensity (6 × 10 W/cm) pulse with high contrast (10). We measured pre-plasma scale lengths in the range of 3-20 nm, before the arrival of the peak of the femtosecond pulse. This measurement plays a crucial role in understanding the mechanism of laser coupling its energy to hot electrons and is hence important for laser-driven ion acceleration and the fast ignition approach to fusion.
View Article and Find Full Text PDFBright, energetic, and directional electron bunches are generated through efficient energy transfer of relativistic intense (~ 10 W/cm), 30 femtosecond, 800 nm high contrast laser pulses to grating targets (500 lines/mm and 1000 lines/mm), under surface plasmon resonance (SPR) conditions. Bi-directional relativistic electron bunches (at 40° and 150°) are observed exiting from the 500 lines/mm grating target at the SPR conditions. The surface plasmon excited grating target enhances the electron flux and temperature by factor of 6.
View Article and Find Full Text PDFWe demonstrate the highest efficiency (∼80) second harmonic generation of joule level, 27 fs, high-contrast pulses in a type-I lithium triborate (LBO) crystal. In comparison, potassium dihydrogen phosphate gives a maximum efficiency of 26%. LBO thus offers high-intensity (>10/), ultra-high contrast femtosecond pulses, which have great potential for high energy density science and applications, particularly with nanostructured targets.
View Article and Find Full Text PDFOptical Kerr gating technique has been employed to investigate the life history of relativistic electrons in solids by temporally gating their Cherenkov emission. Mega-ampere currents of relativistic electrons are created during ultra-intense (2 × 10 W/cm) laser-solid interactions. In order to measure the lifetime of these relativistic electrons in solids, we temporally gate their Cherenkov emission using an optical Kerr gate (OKG).
View Article and Find Full Text PDFRemote manipulation (triggering and guiding) of lightning in atmospheric conditions of thunderstorms has been the subject of intense scientific research for decades. High power, ultrashort-pulse lasers are considered attractive in generating plasma channels in air that could serve as conductors/diverters for lightning. However, two fundamental obstacles, namely the limited length and lifetime of such plasma channels prevented their realization to this date.
View Article and Find Full Text PDFPhys Rev Lett
September 2018
Short pulse, high contrast, intense laser pulses incident onto a solid target are not known to generate fast neutral atoms. Experiments carried out to study the recombination of accelerated protons show a 200 times higher neutralization than expected. Fast neutral atoms can contribute to 80% of the fast particles at 10 keV, falling rapidly for higher energy.
View Article and Find Full Text PDFPhys Rev Lett
February 2018
We report the lifetime of intense-laser (2×10^{19} W/cm^{2}) generated relativistic electron pulses in solids by measuring the time evolution of their Cherenkov emission. Using a picosecond resolution optical Kerr gating technique, we demonstrate that the electrons remain relativistic as long as 50 picoseconds-more than 1000 times longer than the incident light pulse. Numerical simulations of the propagation of relativistic electrons and the emitted Cherenkov radiation with Monte Carlo geant4 package reproduce the striking experimental findings.
View Article and Find Full Text PDFGeneration and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup.
View Article and Find Full Text PDFIons of high energy and high charge are accelerated from compact intense laser produced plasmas and are routinely analysed either by time of flight or Thomson parabola spectrometry. At the highest intensities where ion energies can be substantially large, both these techniques have limitations. Strong electromagnetic pulse noise jeopardises the arrival time measurement, and a bright central spot in the Thomson parabola spectrometer affects the signal to noise ratio of ion traces that approach close to the central spot.
View Article and Find Full Text PDFThe transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-μm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~10 W/cm. The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear.
View Article and Find Full Text PDFTurbulent magnetic fields abound in nature, pervading astrophysical, solar, terrestrial and laboratory plasmas. Understanding the ubiquity of magnetic turbulence and its role in the universe is an outstanding scientific challenge. Here, we report on the transition of magnetic turbulence from an initially electron-driven regime to one dominated by ion-magnetization in a laboratory plasma produced by an intense, table-top laser.
View Article and Find Full Text PDFRelativistic laser interaction with micro- and nano-scale surface structures enhances energy transfer to solid targets and yields matter in extreme conditions. We report on the comparative study of laser-target interaction mechanisms with wire-structures of different size, revealing a transition from a coherent particle heating to a stochastic plasma heating regime which occurs when migrating from micro-scale to nano-scale wires. Experiments and kinetic simulations show that large gaps between the wires favour the generation of high-energy electrons via laser acceleration into the channels while gaps smaller than the amplitude of electron quivering in the laser field lead to less energetic electrons and multi-keV plasma generation, in agreement with previously published experiments.
View Article and Find Full Text PDFUltra-high intensity (> 10 W/cm), femtosecond (~30 fs) laser induced fast electron transport in a transparent dielectric has been studied for two laser systems having three orders of magnitude different peak to pedestal intensity contrast, using ultrafast time-resolved shadowgraphy. Use of a 400 nm femtosecond pulse as a probe enables the exclusive visualization of the dynamics of highest density electrons (> 7 × 10 cm) observed so far. High picosecond contrast (~10) results in greater coupling of peak laser energy to the plasma electrons, enabling long (~1 mm), collimated (divergence angle ~2°) transport of fast electrons inside the dielectric medium at relativistic speeds (~0.
View Article and Find Full Text PDFThe absorption of ultraintense, femtosecond laser pulses by a solid unleashes relativistic electrons, thereby creating a regime of relativistic optics. This has enabled exciting applications of relativistic particle beams and coherent X-ray radiation, and fundamental leaps in high energy density science and laboratory astrophysics. Obviously, central to these possibilities lies the basic problem of understanding and if possible, manipulating laser absorption.
View Article and Find Full Text PDFRecently, it has been greatly appreciated that intense light matter interaction is modified due to the nano- and microstructures in the target by--surface plasmons, laser energy localization scattering etc. Extreme laser intensities produce dense plasmas and collective mechanisms generate energetic electrons, ions and hard x-rays. Recently, it is postulated that the anharmonic electron motion, driven by ultrashort, high-intensity laser pulses, provides a universal mechanism for the laser absorption.
View Article and Find Full Text PDFWe present a hitherto unobserved facet of hydrodynamics, namely the generation of an ultrahigh frequency acoustic disturbance in the terahertz frequency range, whose origins are purely hydrodynamic in nature. The disturbance is caused by differential flow velocities down a density gradient in a plasma created by a 30 fs, 800 nm high-intensity laser (∼5×10(16) W/cm(2)). The picosecond scale observations enable us to capture these high frequency oscillations (1.
View Article and Find Full Text PDFWe present time-resolved reflectivity and transmissivity of hot, overdense plasma by employing a multicolor probe beam, consisting of harmonics at wavelengths of 800 nm, 400 nm and 266 nm. The hot-dense plasma, formed by exciting a fused silica target with a 30 fs, 2 × 10(17) W cm(-2) intensity pulse, shows a sub-picosecond transition in reflectivity (transmissivity), and a wavelength-dependent fall (rise) in the reflected (transmitted) signal. A simple model of probe absorption in the plasma via inverse bremsstrahlung is used to determine electron-ion collision frequency at different plasma densities.
View Article and Find Full Text PDFA pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally incident time-delayed probe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is typically of the order of the pulsewidth, limited by the laser intensity contrast, whereas a spatial resolution of a few μm is achieved by this optical technique.
View Article and Find Full Text PDFWe demonstrate that aligned carbon-nanotube arrays are efficient transporters of laser-generated mega-ampere electron currents over distances as large as a millimeter. A direct polarimetric measurement of the temporal and the spatial evolution of the megagauss magnetic fields (as high as 120 MG) at the target rear at an intensity of (10(18)-10(19)) W/cm2 was corroborated by the rear-side hot electron spectra. Simulations show that such high magnetic flux densities can only be generated by a very well collimated fast electron bunch.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2012
Turbulence in fluids is a ubiquitous, fascinating, and complex natural phenomenon that is not yet fully understood. Unraveling turbulence in high density, high temperature plasmas is an even bigger challenge because of the importance of electromagnetic forces and the typically violent environments. Fascinating and novel behavior of hot dense matter has so far been only indirectly inferred because of the enormous difficulties of making observations on such matter.
View Article and Find Full Text PDFOpt Express
February 2012
We demonstrate that the interaction of intense femtosecond light on a plain solid substrate can be substantially altered by a few micron layer coating of bacterial cells, live or dead. Using E. Coli cells, we show that at an intensity of 10(16)W cm(-2), the bremsstraahlung hard x-ray emission (up to 300 keV), is increased by more than two orders of magnitude as compared to a plain glass slab.
View Article and Find Full Text PDFPhys Rev Lett
September 2010
We present high resolution measurements of the ultrafast temporal dynamics of the critical surface in moderately overdense, hot plasma by using two-color, pump-probe Doppler spectrometry. Our measurements clearly capture the initial inward motion of the plasma inside the critical surface of the pump laser which is followed by outward expansion. The measured instantaneous velocity and acceleration profiles are very well reproduced by a hybrid simulation that uses a 1D electromagnetic particle-in-cell simulation for the initial evolution and a hydrodynamics simulation for the later times.
View Article and Find Full Text PDF