1,488 results match your criteria: "Missouri University of Science and Technology[Affiliation]"

Nanoparticles are widely studied for delivering treatments to target tissues, but few have reached clinical use. Most nanoparticles encounter blood vessels on their way to target tissues. The inner surface of these vessels is lined with endothelial cells covered by a glycocalyx, an extracellular matrix rich in anionic glycans.

View Article and Find Full Text PDF

UTE MRI for assessing demyelination in an mTBI mouse model: An open-field low-intensity blast study.

Neuroimage

April 2025

Department of Radiology, University of California San Diego, CA, USA; Radiology Service, VA San Diego Healthcare System, CA, USA; Department of Bioengineering, University of California San Diego, CA, USA. Electronic address:

Mild traumatic brain injury (mTBI) is a leading cause of long-term disability. Following mTBI, secondary chemical cascades and neuroinflammation can result in myelin damage, significantly impairing cognitive function. This study aims to assess demyelination in mice with mTBI induced by open-field low-intensity blast (LIB) using a novel three-dimensional short repetition time adiabatic inversion recovery UTE (3D STAIR-UTE) magnetic resonance imaging (MRI) sequence.

View Article and Find Full Text PDF

Background And Purpose: This study aims to assess the potential of ultrashort echo time imaging-based magnetization transfer ratio (UTE-MTR) in detecting demyelination in mice with mild traumatic brain injury (mTBI) caused by an open-field low-intensity blast (LIB) injury model.

Methods: This study included 30 male C57BL/6 mice, approximately 8 weeks old, sourced from Jackson Laboratories in Bar Harbor, ME, and conducted under institutional guidelines. The mice were divided into the mTBI group (n = 15) and the sham control group (n = 15).

View Article and Find Full Text PDF

Although the use of affinity tags can greatly improve purification of expressed enzymes, the placement of affinity tags can significantly impact the expression, solubility, and function of recombinant proteins. To facilitate the optimal design of 6xHis-tagged constructs for protein purification, we developed Terminator, a Python-based software package, which takes a UniProt ID or existing protein sequence as input, identifies related sequences, maps sequence conservation retrieved from ConSurf onto protein 3D structures retrieved from the PDB and SWISS-MODEL, and analyzes proximity to cavities and functional sites to recommend the N- or C-terminus for placement of 6xHis fusion tags <15 residues in length. The package also outputs a document with available purification and activity literature for the target and closely related proteins organized by year.

View Article and Find Full Text PDF

Industrial wastewater treatment is crucial for environmental protection and public health. This study aimed to investigate the efficiency of the coagulation-flocculation-aided adsorption (C/F-A) system utilizing aluminum salt (AS) coagulant and characterized acid-activated kaolin clay adsorbent (KC) for the removal of pollutants from vegetable oil processing industrial wastewater (VOPIW). The objectives were to optimize the operational parameters of the C/F-A system, evaluate the adsorption capacity of KC, analyze the removal mechanisms, and assess the feasibility of scale-up for industrial applications.

View Article and Find Full Text PDF

Ensuring food safety requires continuous innovation, especially in the detection of foodborne pathogens and chemical contaminants. In this study, we present a system that combines Raman spectroscopy with machine learning (ML) algorithms for the precise detection and analysis of VOCs linked to foodborne pathogens in complex liquid mixtures. A remote fiber-optic Raman probe was developed to collect spectral data from 42 distinct VOC mixtures, representing contamination scenarios with dilution levels ranging from undiluted to highly diluted states.

View Article and Find Full Text PDF

In coastal areas, the presence of concrete cracks provides pathways for hazardous ions to ingress from the exterior into the interior of concrete, while the migration of the ions further accelerates concrete deterioration and causes durability problems. The incorporation of graphene oxide (GO) into concrete can inhibit crack initiation and development starting at the nanoscale, improving the concrete microstructure, thereby affecting concrete's resistance to hazardous ion transport and the resulting deterioration. In this study, a multi-scale transport model for cementitious materials with a GO admixture was established to predict the resistance to hazardous ions.

View Article and Find Full Text PDF

Previously, we reported final-instar lepidopteran larvae exposed to low doses of imidacloprid, clothianidin, and thiamethoxam had arrest in pupal ecdysis, which is a novel adverse outcome for neonicotinoid insecticides. Since neonicotinoids disrupt acetylcholine signaling, we hypothesized that the excitatory neurotransmitter acetylcholine plays a critical role in regulation of pupal ecdysis, likely by modulating the release of peptides from crustacean cardioactive peptide (CCAP) neurons. In this paper, using two lepidopteran species, we undertook studies with five additional nicotinic acetylcholine receptor (nAChR) agonists and three muscarinic acetylcholine receptor (mAChR) agonists to hypothesize the putative nAChR subunits that mediate pupal ecdysis.

View Article and Find Full Text PDF

Accurate and precise detection of lanes and traffic signs is predominant for the safety and efficiency of autonomous vehicles and these two significant tasks should be addressed to handle Indian traffic conditions. There are several state-of-art You Only Live Once (YOLO) models trained on benchmark datasets which fails to cater the challenges of Indian roads. To address these issues, the models need to be trained with a wide variety of Indian data samples for the autonomous vehicles to perform better in India.

View Article and Find Full Text PDF

Few-shot transfer learning for individualized braking intent detection on neuromorphic hardware.

J Neural Eng

February 2025

Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 400 W. 13th Street, Rolla, MO 65409, United States of America.

This work explores use of a few-shot transfer learning method to train and implement a convolutional spiking neural network (CSNN) on a BrainChip Akida AKD1000 neuromorphic system-on-chip for developing individual-level, instead of traditionally used group-level, models using electroencephalographic data. The efficacy of the method is studied on an advanced driver assist system related task of predicting braking intention.Data are collected from participants operating an NVIDIA JetBot on a testbed simulating urban streets for three different scenarios.

View Article and Find Full Text PDF

Quasi-2D perovskite made with organic spacers co-crystallized with inorganic cesium lead bromide inorganics is demonstrated for near unity photoluminescence quantum yield at room temperature. However, light emitting diodes made with quasi-2D perovskites rapidly degrade which remains a major bottleneck in this field. In this work, It is shown that the bright emission originates from finely tuned multi-component 2D nano-crystalline phases that are thermodynamically unstable.

View Article and Find Full Text PDF

This study examined the electrodissolution mechanism of five impure sphalerite samples, which differ significantly in purity levels, along with their partially oxidized counterparts in a 0.5 M HSO. Partially oxidized samples were prepared through an incomplete leaching of sphalerite using HSO with Fe(SO).

View Article and Find Full Text PDF

Pregnancy is a vulnerable time with significant cardiovascular changes that can lead to adverse outcomes, which can extend into the postpartum window. Exposure to emissions from electronic cigarettes (Ecig), commonly known as "vaping," has an adverse impact on cardiovascular function during pregnancy and post-natal life of offspring, but the postpartum effects on maternal health are poorly understood. We used a Sprague Dawley rat model, where pregnant dams are exposed to Ecigs between gestational day (GD)2-GD21 to examine postpartum consequences.

View Article and Find Full Text PDF

Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.

View Article and Find Full Text PDF

Nonaqueous redox flow batteries (NARFBs) have been plagued by the lack of appropriate separators to prevent crossover. In this article, the synthesis and characterization of poly(norbornene) (PNB) anion-exchange membranes (AEMs) were studied. PNB is a copolymer of butyl norbornene (BuNB) and bromobutyl norbornene (BrBuNB) with varying amounts of tetramethyl hexadiamine cross-linker.

View Article and Find Full Text PDF

Crystallization from the melt is a critical process governing the properties of semi-crystalline polymeric materials. While structural analyses of melting and crystallization transitions in bulk polymers have been widely reported, in contrast, those in thin polymer films on solid supports have been underexplored. Herein, in situ Raman microscopy and self-modeling curve resolution (SMCR) analysis are applied to investigate the temperature-dependent structural changes in poly(ethylene oxide) (PEO) films during melting and crystallization phase transitions.

View Article and Find Full Text PDF

This study employed high-time-resolution systems to examine the transient properties of aerosols and gases emitted from electronic cigarette (EC) puffs. Using a fast aerosol sizer, we measured particle size distributions (PSDs) across various EC brands (JUUL, VUSE, VOOPOO), revealing sizes ranging from 5 to 1000 nm at concentrations of 10 to 10 cm. Most aerosols were found to be in the ultrafine range (below 100 nm), with JUUL-, VUSE-, and VOOPOO-producing aerosols with geometric mean sizes of 19.

View Article and Find Full Text PDF

Aim: Chronic wound infections present a prevalent medical issue and a multifaceted problem that significantly impacts healthcare systems worldwide. Biofilms formed by pathogenic bacteria are fundamental virulence factors implicated in the complexity and persistence of bacterial-associated wound infections, leading to prolonged recovery times and increased risk of infection. This study aims to investigate the antibacterial effectiveness of commonly employed bioactive wound healing compositions with a particular emphasis on their effectiveness against common bacterial pathogens encountered in chronic wounds - , , and to identify optimal wound product composition for managing chronic wound infections.

View Article and Find Full Text PDF

Different life histories result in different strategies to allocate energy in biosynthesis, including growth and reproduction, and somatic maintenance. One of the most notable life history differences between and species is that the former grow much faster than the latter, and during metamorphosis, a large amount of tissue in species disintegrates. In this review, using caterpillars and cockroach nymphs as examples, we show that, due to these differences in growth processes, cockroach nymphs spend 20 times more energy on synthesizing one unit of biomass (indirect cost of growth) than butterfly caterpillars.

View Article and Find Full Text PDF

We report a novel light-dependent activation mechanism for 2-haloacrylate hydratase (2HAH), a flavin-dependent dehalogenase. Initial assays revealed inconsistent enzyme activity, stabilized only after chemical reduction or exposure to bright light. Spectroscopic analysis showed that light accelerates flavin reduction by NAD(P)H, completing in 30 s under bright light versus slow reduction in the dark.

View Article and Find Full Text PDF

For the first time, rotational constants along with centrifugal distortion constants have been determined for OThS and OCeS. The rotational spectra of these molecules and, in each case, one other isotopologue (OThS and OCeS) were produced utilizing a laser ablation sourcing technique incorporated into a chirped-pulse Fourier transform microwave spectrometer operating in the 8 to 18 GHz region of the electromagnetic spectrum. The bent structures determined are in very good agreement with theoretical calculations.

View Article and Find Full Text PDF

Hybrid poplars are widely recognized for their effectiveness in remediating subsurface aromatic hydrocarbon contaminants, including benzene, toluene, ethylbenzene, and xylene isomers (BTEX). While BTEX compounds are frequently found in the transpiration streams of poplars at contaminated sites, the microbial dynamics within these trees, particularly in response to hydrocarbon exposure, remain underexplored. This study utilized high-throughput amplicon sequencing to investigate the trunk microbiome in hybrid poplars at a field-scale toluene phytoremediation site.

View Article and Find Full Text PDF

A novel air-to-liquid mass transfer system using wetted rotating membranes was designed to enhance air-to-liquid carbon dioxide (CO) mass transfer efficiency. Traditional methods, such as sparging, are energy-intensive, but the rotating membrane reduces energy demands by optimising membrane wetting via rotational motion. Experimental tests were conducted using a small-scale system with a membrane width of 0.

View Article and Find Full Text PDF

Due to the high cost of each experimental run in additive manufacturing (AM), there has been a drive to develop simulations that can find the optimal processing parameters. The accuracy of these simulations is dependent on the accuracy of the material parameters recorded in literature. These reported parameters can vary widely resulting in differing simulation results.

View Article and Find Full Text PDF