98%
921
2 minutes
20
Quasi-2D perovskite made with organic spacers co-crystallized with inorganic cesium lead bromide inorganics is demonstrated for near unity photoluminescence quantum yield at room temperature. However, light emitting diodes made with quasi-2D perovskites rapidly degrade which remains a major bottleneck in this field. In this work, It is shown that the bright emission originates from finely tuned multi-component 2D nano-crystalline phases that are thermodynamically unstable. The bright emission is extremely sensitive to external stimuli and the emission quickly dims away upon heating. After a detailed analysis of their optical and morphological properties, the degradation is attributed to 2D phase redistribution associated with the dissociation of the organic spacers departing from the inorganic lattice. To circumvent the instability problem, a diamine is investigated spacer that has both sides attached to the inorganic lattice. The diamine spacer incorporated perovskite film shows significantly improved thermal tolerance over maintaining a high photoluminescence quantum yield of over 50%, which will be a more robust material for lighting applications. This study guides designing quasi-2D perovskites to stabilize the emission properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202413412 | DOI Listing |
The formation of heterostructure interfaces from quantum dots (or nanocrystals) and lower-dimensional (2D or quasi-2D) materials enables interfacial and optoelectronic property tuning. However, this strategy has not been sufficiently characterized, for example, the application of cesium halide nanocrystals to quasi-2D perovskite structures is underexplored, and the mechanisms of the resulting structural modifications and specific nanocrystal roles are not fully understood. Herein, the effects of postsynthetically surface-modifying quasi-2D perovskite films with CsX ( = Cl, Br, I) nanocrystals are examined to bridge this gap.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:
We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.
View Article and Find Full Text PDFQuasi-two-dimensional (quasi-2D) perovskites hold promise for flexible optoelectronics but suffer from mechanical brittleness. Here, we enhance their flexibility by incorporating a styrene-ethylene-butylene-styrene (SEBS) triblock copolymer during antisolvent-assisted crystallization. The resulting composite films exhibit ~100× lower Young's modulus and wrinkled morphologies that boost light absorption.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2025
College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China.
Halide perovskite-based memristors are promising neuromorphic devices due to their unique ion migration and interface tunability, yet their conduction mechanisms remain unclear, causing stability and performance issues. Here, we engineer interstitial Ag ions within a quasi-two-dimensional (quasi-2D) halide perovskite ((CHCHNH)CsPbI) to enhance device stability and controllability. The introduced Ag ions occupy organic interlayers, forming thermodynamically stable structures and introducing deep-level energy states without structural distortion, which do not act as non-radiative recombination centers, but instead serve as efficient charge trapping centers that stabilize intermediate resistance states and facilitate controlled filament evolution during resistive switching.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2025
College of Future Information Technology, Fudan University,Shanghai 200438, China.
Luminescent solar concentrators (LSCs) based on high photoluminescence quantum yield (PLQY) quasi-2D perovskites demonstrate superior edge light collection capability, which breaks the étendue limit and achieves signal reception in visible light communication (VLC). Herein, 2,7-bis(diphenylphosphoryl)-9,9-spirobifluorene (SPPO13) is introduced into the Q-2D RP-phase perovskite (BACsPbBr, <> = 5), realizing dual effects of defect passivation and small value phase suppression. The emission peak of the optimized film is at 518 nm with a maximum PLQY of 99.
View Article and Find Full Text PDF