Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanoparticles are widely studied for delivering treatments to target tissues, but few have reached clinical use. Most nanoparticles encounter blood vessels on their way to target tissues. The inner surface of these vessels is lined with endothelial cells covered by a glycocalyx, an extracellular matrix rich in anionic glycans. The role of the glycocalyx in nanoparticle interactions is not well understood. Here, we demonstrate that endothelial cells need extended culture times to synthesize a mature glycocalyx. Our research shows that branched polyethyleneimine functionalized gold nanoparticles bind to endothelial cells expressing either a developing or mature glycocalyx, with the interaction involving hyaluronan and heparan sulfate. These nanoparticles are subsequently internalized. Similar results were seen with poly(L-arginine). A mature glycocalyx protects cells by reducing the toxicity of these cationic nanoparticles. In contrast, lipoic acid-functionalized gold nanoparticles are internalized by cells with a developing glycocalyx, but not a mature one. Poly(L-glutamic acid) only interacts with cells when major glycans in the glycocalyx are degraded. These findings highlight the complex relationship between nanoparticle charge and structure, and their effects on toxicity, binding, and uptake by endothelial cells. This offers important insights for improving nanoparticle interactions with blood vessels in health and disease. STATEMENT OF SIGNIFICANCE: Endothelial cells lining blood vessels form a barrier through which nanoparticles must cross to reach target tissues. These cells are covered with a layer called the glycocalyx, which is rich in anionic glycans. However, the role of the glycocalyx in how nanoparticles interact with cells remains underexplored. Our research revealed that cells with a mature glycocalyx internalize cationic nanoparticles and experience reduced cytotoxicity. Conversely, a mature glycocalyx prevents anionic nanoparticles from entering cells. These results suggest that the structure of both the nanoparticles and the glycocalyx should be considered in future studies to improve the use of nanoparticles for medical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2025.03.012DOI Listing

Publication Analysis

Top Keywords

endothelial cells
20
mature glycocalyx
20
glycocalyx
13
nanoparticles
13
target tissues
12
blood vessels
12
cells
12
cells covered
8
rich anionic
8
anionic glycans
8

Similar Publications

[Mechanism and features of blood vessel damage around the gunshot wound canal].

Sud Med Ekspert

January 2025

Bureau of Forensic Medical Expertise, Saint-Petersburg, Russia.

Unlabelled: Forming wound canal is one of the main signs of gunshot wound. Its features are related to the following differential diagnostic signs: presence of gunshot wound, its intravitality, prescription, direction of projectile (bullet) movement, power of used weapon, etc.

Objective: To study the mechanisms of wound canal formation in gunshot injury, the pattern of damage to the biological tissues of its walls (mainly, blood vessels), the features of hemorrhages forming around it.

View Article and Find Full Text PDF

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Objective: Adipose-derived regenerative cells (ADRCs) are promising cell sources for damaged tissue regeneration. The efficacy of therapeutic angiogenesis with ADRC implantation in patients with critical limb ischemia has been demonstrated in clinical studies. There are several possible mechanisms in this process such as cytokines and microRNA.

View Article and Find Full Text PDF

Vascularization of implanted biomaterials is critical to reconstructive surgery and tissue engineering. Ultimately, the goal is to promote a rapidly perfusable hierarchical microvasculature that persists with time and can meet underlying tissue needs. We have previously shown that using a microsurgical technique, termed micropuncture (MP), in combination with porous granular hydrogel scaffolds (GHS) fabricated via interlinking hydrogel microparticles (microgels) results in a rapidly perfusable patterned microvasculature.

View Article and Find Full Text PDF

Abnormal expression of HLA class Ib, MICA and MICB molecules is associated with the evolution of pathological conditions and clinical settings. Here, we use RNA-sequencing data from two publicly-available projects, from different human organs and tissues and at single-cell level, to present their transcriptional expression throughout the human body, in comparison to that of HLA class Ia, HLA class II, their costimulatory molecules, and the main HLA transcription factors. Our analyses for 21 target genes reveal that median gene expression differs by orders of magnitude and that the classical/non-classical HLA distinction is not absolute for overall expression.

View Article and Find Full Text PDF