1,076 results match your criteria: "Izmir Institute of Technology[Affiliation]"

Background: Older adults are vulnerable to mistimed food intake due to health and environmental changes; characterizing meal timing may inform strategies to promote healthy aging. We investigated longitudinal trajectories of self-reported meal timing in older adults and their associations with morbidity, genetic profiles, and all-cause mortality.

Methods: We analyzed data from 2945 community-dwelling older adults from the University of Manchester Longitudinal Study of Cognition in Normal Healthy Old Age, with up to five repeated assessments of meal timing and health behaviors conducted between 1983 and 2017.

View Article and Find Full Text PDF

Fluorogen-activating proteins are powerful molecular tools for microscopy, including functional imaging. These proteins serve as an alternative to GFP-like proteins, as they do not require oxygen for chromophore maturation. However, the restricted selectivity of proteins to chromophores, combined with the limited number of spectral channels of conventional fluorescent microscopes, hinders the development of multicolor synthetic dyes.

View Article and Find Full Text PDF

Chronic kidney diseases (CKDs), which often end in kidney failure for many people around the world, have an important place in public health given that they also trigger other diseases. Therefore, the development of fast and cost-effective diagnostic technologies enables effective monitoring of patients and early diagnosis. Here, using the Enzyme-Linked Immunosorbent Assay (ELISA) principle, serum creatinine concentrations were determined using the developed lab-on-a-chip (LOC) platform.

View Article and Find Full Text PDF

Phased-out flame retardants, e.g., polybrominated diphenyl ethers (PBDEs), persist in environmental media due to their resistance to degradation and ongoing emissions from PBDE containing materials and industrial activities.

View Article and Find Full Text PDF

This study evaluates the potential of quaternary ammonium-modified cellulose as a biosorbent for bromate (BrO₃) removal from aqueous solutions. Elemental analysis and scanning electron microscopy (SEM) characterized the elemental composition and microstructural features of the biosorbent, whereas Fourier-transform infrared (FTIR) spectroscopy elucidated its molecular structure. Experimental results revealed that BrO₃ removal efficiency increased with the biosorbent dose, achieving approximately 58%, 78%, and 90% removal with 0.

View Article and Find Full Text PDF

Enhanced catalytic performance of lipase on di-n-butyl and diethylhexyl phthalates: insights into substrate specificity and immobilization strategy.

Environ Technol

August 2025

Departamento de Ingeniería Química, Grupo de Bioingeniería y Procesos Sostenibles, CINTECX, Universidade de Vigo, Vigo, Spain.

Di-n-butyl (DnBP) and Diethylhexyl Phthalates (DEHP), known as potential endocrine disruptors, are priority pollutants categorized by many regulatory agencies. Enzymatic degradation is a green and efficient approach to remove PEs in the environment. In this study, the DnBP and DEHP degradation performance of lipase (palatase) in free and immobilized forms on Halloysite nanoclays (HNCs) in an aqueous system was investigated.

View Article and Find Full Text PDF

Intratumoral heterogeneity remains a major barrier to durable cancer therapies, largely driven by the persistence of cancer stem cells (CSCs). In this study, we employed an integrated, multi-scale approach to investigate how melanoma CSCs respond to siRNA-mediated silencing of three key regulatory genes: KLF4, SHH, and HIF1α. Using a combination of morphological, molecular, spectroscopic, and elemental analyses, we explored structural and biochemical consequences of gene knockdown.

View Article and Find Full Text PDF

Rechargeable aqueous zinc-ion batteries (AZIBs) have become a viable option in electrochemical energy storage systems (EESS) owing to their inherent safety features and economic friendliness. Nonetheless, creating suitable cathode materials for AZIBs with high structural stability, good rate performance, and great capacity remains a significant challenge. Polyoxometalate (POM)-based nanohybrid materials have shown promising results in high cycling stability and great specific capacity.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is increasing globally, making identification of preventative measures necessary. Transplantation of the microbiota from CRC and non-CRC patients into mice demonstrates that non-diseased individuals possess organisms that reduce tumor formation and highlights Bacteriodes uniformis as protective. B.

View Article and Find Full Text PDF

Motivation: Rare diseases affect millions of people worldwide, yet their genomic foundations remain poorly understood due to limited patient data and strict privacy regulations, such as the General Data Protection Regulation (GDPR) (https://gdpr.eu/tag/gdpr/) in March 2025. These restrictions can hinder the collaborative analysis of genomic data necessary for uncovering disease-causing variants.

View Article and Find Full Text PDF

A polyelectrolyte complex (PEC) formation offers a simple and green approach to obtaining albumin nanoparticles (NPs) without the use of organic solvents, crosslinkers and specialized equipment. The prepared cationic albumin proteins interact with anionic albumin proteins to form albumin PEC NPs (110 nm) with +37 mV surface zeta potential. Furthermore, albumin PEC NPs preparation in water alone achieves chlorambucil (CHL) loading up to 17 times higher than the conventional desolvation method, largely due to the elimination of drug loss to organic solvents.

View Article and Find Full Text PDF

Recent investigations have begun to explore the cellular interactions of nanoparticles (NPs) in three-dimensional (3D) neuro-spheroid models of the blood-brain barrier (BBB), offering novel insights into NP transport across the barrier and their potential neurotoxic effects. Building on these findings, we investigated the effects of particle shape and surface modification on the transport dynamics and cellular interactions of gold NPs (AuNPs) using a multicellular 3D spheroid model of the BBB. AuNPs with two different morphologies, spherical and rod-like, were synthesized, modified with polyethylene glycol (PEG) and characterized in detail using Ultraviolet-Visible (UV-Vis) Spectroscopy, Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) techniques.

View Article and Find Full Text PDF

Tay-Sachs disease (TSD) is a rare lysosomal storage disorder marked by the progressive buildup of GM2 in the central nervous system (CNS). This condition arises from mutations in the HEXA gene, which encodes the α subunit of the enzyme β-hexosaminidase A. A newly developed mouse model for early-onset TSD (Hexa-/-Neu3-/-) exhibited signs of neurodegeneration and neuroinflammation, evidenced by elevated levels of pro-inflammatory cytokines and chemokines, as well as significant astrogliosis and microgliosis.

View Article and Find Full Text PDF

Understanding the behavior of microplastics in aquatic environments is crucial, given their widespread presence and potential ecological impact. This study investigated the effects of biofilm formation and weathering processes on the settling rates of microplastics across different water matrices. To this end, nine different polymer types were examined in four distinct conditions-pristine, biofilm-coated, aged, and biofilm-coated after weathering-across three defined size categories.

View Article and Find Full Text PDF

Conventional Ag-decorated TiO coatings suffer from low adsorption capacity and burst release kinetics, limiting long-term antibacterial efficacy and risking cytotoxicity. An entirely different payload release approach can be based on metal-organic frameworks (MOFs), which offer tunable porosity, high surface area, and internal diffusion channels. Here, we report a thermally stabilized Ti-based MOF [NH-MIL-125(Ti)] functionalized with Ag via reactive deposition, enabling high Ag loading (∼14.

View Article and Find Full Text PDF

Red fluorescent proteins (RFPs) are often probes of choice for living tissue microscopy and whole-body imaging. When choosing a specific RFP variant, the priority may be given to the fluorescence brightness, maturation rate, monomericity, excitation/emission wavelengths, and low toxicity, which are rarely combined in an optimal way in a single protein. If additional requirements such as prolonged fluorescence lifetime and/or blinking ability are applied, the available repertoire of probes could dramatically narrow.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) play a central role in melanoma growth, resistance to treatment, and relapse, however, their dynamic regulatory behavior remains poorly understood. Vibrational spectroscopy offers a unique, label-free approach to investigate cellular heterogeneity at the molecular level. Here, we explored the biochemical and regulatory dynamics of CSCs identified by using a time-course design, integrating infrared and Raman spectroscopies with cell cycle analysis and immunocytochemistry targeting the checkpoint proteins p16 and p21.

View Article and Find Full Text PDF

Uncovering the neuronal mechanisms un-derlying optimal behavioral performance is essential to understand how the brain dynamically adapts to changing conditions. In Parkinson's disease (PD), these neuronal mechanisms are disrupted and lead to impairments in motor coordination and higher-order cognitive functions. This study investigates neuronal dynamics during a lower-limb pedaling task by analyzing the dynamical entropy of EEG signals in healthy controls (HC), PD patients, and PD patients with freezing of gait (PDFOG).

View Article and Find Full Text PDF

Background: Olive leaves are rich in bioactive compounds with potential health benefits; however, their limited bioavailability and stability hinder their effective utilization. Emerging technologies, nanocarrier-based delivery systems, have shown promise in enhancing these properties.

Results: The optimal conditions for proniosome formulation were 50 rpm rotational speed and 35 °C, achieving 81.

View Article and Find Full Text PDF

The ability to control heat transport with electrical signals has been an outstanding challenge due to the lack of efficient electrothermal materials. Previous attempts have mainly concentrated on low-thermal conductivity materials and encountered various problems such as narrow dynamic range and modest on/off ratios. Here, using high-thermal conductivity graphite films, we demonstrate an electrothermal switch enabling electrically tunable heat flow at the device level.

View Article and Find Full Text PDF

Background: Metabolic and stress response adaptations in prostate cancer (PCa) mediate tumor resistance to radiation therapy (RT). Our study investigated the roles of glutamine (Gln) transporters SLC1A5, SLC7A5, and SLC38A1 in regulating NUPR1-mediated stress response, PCa cell survival, metabolic reprogramming, and response to RT.

Methods: The radiosensitizing potential of GLS inhibition with CB-839 was analyzed in prostate cancer xenograft models.

View Article and Find Full Text PDF

Teeth are a significant source of stem cells and have clinical importance for regenerative medicine. A human tooth harbors different kinds of stem cells in the dental pulp (DPSC) or the periodontal ligament (PDLSC). Also exfoliated teeth in childhood contain a special type of stem cells in their pulp called Stem cells from Human Exfoliated Deciduous teeth (SHED).

View Article and Find Full Text PDF

This study presents the development of a novel retrorsine (RTS)-imprinted sensor utilizing oxidized multi-walled carbon nanotubes (Ox-MWCNTs), polypyrrole (PPy), and gold nanoparticles (AuNPs), employing square wave voltammetry for the sensitive and selective detection of RTS which causes oxidative-stress and DNA damage. The fabricated Ox-MWCNT-PPy-AuNP sensor demonstrated a surface-area of (0.218 cm) is 4.

View Article and Find Full Text PDF

The effect of marination on the formation of polycyclic aromatic hydrocarbons (PAH) in charcoal-grilled vegetables was studied. Various marinade ingredients, including apple cider vinegar, red grape vinegar, lemon juice, garlic powder, black pepper, and the food additive -butylhydroquinone (TBHQ) were applied to vegetable samples before charcoal grilling. The total phenolic content (TPC) and total antioxidant capacity (TAC) of each marinade ingredient were assessed for their contribution to PAH inhibition.

View Article and Find Full Text PDF

Vision Transformers-Based Deep Feature Generation Framework for Hydatid Cyst Classification in Computed Tomography Images.

J Imaging Inform Med

July 2025

Department of Electrical and Electronics Engineering, Izmir Institute of Technology, Gülbahçe/Urla, 35430, İzmir, Turkey.

Hydatid cysts, caused by Echinococcus granulosus, form progressively enlarging fluid-filled cysts in organs like the liver and lungs, posing significant public health risks through severe complications or death. This study presents a novel deep feature generation framework utilizing vision transformer models (ViT-DFG) to enhance the classification accuracy of hydatid cyst types. The proposed framework consists of four phases: image preprocessing, feature extraction using vision transformer models, feature selection through iterative neighborhood component analysis, and classification, where the performance of the ViT-DFG model was evaluated and compared across different classifiers such as k-nearest neighbor and multi-layer perceptron (MLP).

View Article and Find Full Text PDF