Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Red fluorescent proteins (RFPs) are often probes of choice for living tissue microscopy and whole-body imaging. When choosing a specific RFP variant, the priority may be given to the fluorescence brightness, maturation rate, monomericity, excitation/emission wavelengths, and low toxicity, which are rarely combined in an optimal way in a single protein. If additional requirements such as prolonged fluorescence lifetime and/or blinking ability are applied, the available repertoire of probes could dramatically narrow. Since the entire diversity of conventional single-component RFPs belongs to just a few phylogenetic lines (DsRed-, eqFP578- and eqFP611-derived being the major ones), it is not unexpected that their advantageous properties are split between close homologs. In such cases, a systematic mutagenetic analysis focusing on variant-specific amino acid residues can shed light on the origins of the distinctness between related RFPs and may aid in consolidating their strengths in new RFP variants. For instance, the protein FusionRed, despite being efficient in fluorescence labeling thanks to its good monomericity and low cytotoxicity, has undergone considerable loss in fluorescence brightness/lifetime compared to the parental mKate2. In this contribution, we describe a fast-maturing monomeric RFP designed semi-rationally based on the mKate2 and FusionRed templates that outperforms both its parents in terms of molecular brightness, has extended fluorescence lifetime, and displays a spontaneous blinking pattern that is promising for nanoscopy use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12322884PMC
http://dx.doi.org/10.32607/actanaturae.27545DOI Listing

Publication Analysis

Top Keywords

red fluorescent
8
fluorescence lifetime
8
fluorescence
5
key substitutions
4
substitutions chromophore
4
chromophore environment
4
environment mkate2
4
mkate2 produce
4
produce enhanced
4
enhanced fusionred-like
4

Similar Publications

Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.

View Article and Find Full Text PDF

Fluorescent proteins (FPs) are commonly used as reporters to examine intracellular genetic, molecular, and biochemical status. Flow cytometry is a powerful technique for accurate quantification of single-cell fluorescent levels. Here, we characterize green, red, and blue FPs for use in yeast .

View Article and Find Full Text PDF

Hetero-Hydrazone Photoswitches.

Angew Chem Int Ed Engl

September 2025

Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.

The fine-tuning of the (photo)physical properties of molecular photoswitches remains an active area of research, and recently, the incorporation of heterocycles into photoswitch scaffolds has emerged as an effective strategy in this vein. To assess the influence that heterocyclic rings have on hydrazone-based systems, we synthesized a series of photoswitches and examined the impact that heterocycles have on the switching efficiency. TD-DFT calculations and structure-property analyses revealed that heterocycles with basic nitrogen and secondary hydrogen-bonding sites (e.

View Article and Find Full Text PDF

On-Target Photoassembly of Pyronin Dyes for Super-Resolution Microscopy.

Angew Chem Int Ed Engl

September 2025

Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.

Controlled photoactivation is an auspicious and emerging approach in super-resolution microscopy, offering virtually zero background signal from the marker prior to activation. Pyronins are well-established fluorophores, but due to their inherent intercalating tendency towards nucleic acids, their use has been mostly avoided in super-resolution microscopy. Here, we describe a new class of diaryl ether and diaryl silane molecules that upon photoactivation close into fluorescent (silicon-)pyronins and term them Pyronin Upon Light Irradiation (PULI).

View Article and Find Full Text PDF

Biogenic amines (BAs) are organic nitrogen compounds formed through microbial decarboxylation of amino acids during food spoilage and biological metabolism. Therefore, the development of rapid, selective, and cost-effective detection strategies for BAs is significant for ensuring food safety and quality. In this study, a new dicyanoisophorone-based fluorescent probe (IPC) was developed, capable of fluorescence detection of aliphatic primary amines (e.

View Article and Find Full Text PDF