Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tay-Sachs disease (TSD) is a rare lysosomal storage disorder marked by the progressive buildup of GM2 in the central nervous system (CNS). This condition arises from mutations in the HEXA gene, which encodes the α subunit of the enzyme β-hexosaminidase A. A newly developed mouse model for early-onset TSD (Hexa-/-Neu3-/-) exhibited signs of neurodegeneration and neuroinflammation, evidenced by elevated levels of pro-inflammatory cytokines and chemokines, as well as significant astrogliosis and microgliosis. Identifying disease-specific microRNAs (miRNAs) may aid the development of targeted therapies. Although previous small-scale studies have investigated miRNA expression in some regions of GM2 gangliosidosis mouse models, thorough profiling of miRNAs in this innovative TSD model remains to be done. In this study, we employed next-generation sequencing to analyze the complete miRNA profile of neuroglial cells from Hexa-/-Neu3-/- mice. By comparing KEGG and Reactome pathways associated with neurodegeneration, neuroinflammation, and sphingolipid metabolism in Hexa-/-Neu3-/- neuroglial cells, we discovered new microRNAs and their targets related to the pathophysiology of GM2 gangliosidosis. For the first time, our findings showed that miR-708-5p, miR-672-5p, miR-204-5p, miR-335-5p, and miR-296-3p were upregulated, while miR-10 b-5p, miR-615-3p, miR-196a-5p, miR-214-5p, and miR-199a-5p were downregulated in Hexa-/-Neu3-/- neuroglial cells in comparison to age-matched wild-type (WT). These specific changes in miRNA expression deepen our understanding of the disease's neuropathological characteristics in Hexa-/-Neu3-/- mice. Our study suggests that miRNA-based therapeutic strategies may improve clinical outcomes for TSD patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-025-02395-8DOI Listing

Publication Analysis

Top Keywords

neuroglial cells
16
neurodegeneration neuroinflammation
8
mirna expression
8
gm2 gangliosidosis
8
hexa-/-neu3-/- mice
8
hexa-/-neu3-/- neuroglial
8
hexa-/-neu3-/-
5
comprehensive microrna-seq
4
microrna-seq transcriptomic
4
transcriptomic analysis
4

Similar Publications

Sleep is a complex behavior regulated by various brain cell types. However, the roles of brain-resident macrophages, including microglia and CNS-associated macrophages (CAMs), particularly those derived postnatally, in sleep regulation remain poorly understood. Here, we investigated the effects of resident (embryo-derived) and repopulated (postnatally derived) brain-resident macrophages on the regulation of vigilance states in mice.

View Article and Find Full Text PDF

Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.

View Article and Find Full Text PDF

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF

Metabolic synergy between astrocytes and neurons is key to maintaining normal brain function. As the main supporting cells in the brain, astrocytes work closely with neurons through intercellular metabolic synergy networks to jointly regulate energy metabolism, lipid metabolism, synaptic transmission, and cerebral blood flow. This important synergy is often disrupted in neurological diseases such as Alzheimer's disease, Parkinson's disease, and stroke.

View Article and Find Full Text PDF