Recent investigations have begun to explore the cellular interactions of nanoparticles (NPs) in three-dimensional (3D) neuro-spheroid models of the blood-brain barrier (BBB), offering novel insights into NP transport across the barrier and their potential neurotoxic effects. Building on these findings, we investigated the effects of particle shape and surface modification on the transport dynamics and cellular interactions of gold NPs (AuNPs) using a multicellular 3D spheroid model of the BBB. AuNPs with two different morphologies, spherical and rod-like, were synthesized, modified with polyethylene glycol (PEG) and characterized in detail using Ultraviolet-Visible (UV-Vis) Spectroscopy, Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) techniques.
View Article and Find Full Text PDF