75 results match your criteria: "CSIR-Advanced Materials and Processes Research Institute AMPRI[Affiliation]"

Recently, two-dimensional (2D)-borophene has emerged as a remarkable translational nanomaterial substituting its predecessors in the field of biomedical sensors, diagnostic tools, high-performance healthcare devices, super-capacitors, and energy storage devices. Borophene justifies its demand due to high-performance and controlled optical, electrical, mechanical, thermal, and magnetic properties as compared with other 2D-nanomaterials. However, continuous efforts are being made to translate theoretical and experimental knowledge into pragmatic platforms.

View Article and Find Full Text PDF

The current scenario, an ongoing pandemic of COVID-19, places a dreadful burden on the healthcare system worldwide. Subsequently, there is a need for a rapid, user-friendly, and inexpensive on-site monitoring system for diagnosis. The early and rapid diagnosis of SARS-CoV-2 plays an important role in combating the outbreak.

View Article and Find Full Text PDF

Green conversion of hazardous red mud into diagnostic X-ray shielding tiles.

J Hazard Mater

February 2022

CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal, Madhya Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address:

Red mud is a solid hazardous alumina industrial waste, which is rich in iron, titanium, aluminum, silicon, calcium, etc. The red mud contains 30-60% of hematite, which is suitable for shielding high energy X- and gamma rays. So, the iron rich red mud was converted into diagnostic X-ray shielding tiles through ceramic route by adding a certain weight percentage of BaSO and binders (kaolin clay or sodium hexametaphosphate) with it.

View Article and Find Full Text PDF

Antibacterial and antiviral high-performance nanosystems to mitigate new SARS-CoV-2 variants of concern.

Curr Opin Biomed Eng

March 2022

NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA.

The increased severity of the COVID-19 infection due to new SARS-CoV-2 variants has resonated pandemic impact which made health experts to re-evaluate the effectiveness of pandemic management strategies. This becomes critical owing to the infection in large population and shortcomings in the existing global healthcare system worldwide. The designing of high-performance nanosystems (NS) with tunable performances seems to be the most efficient method to tackle infectious SARS-CoV-2 variants including recently emerged omicron mutation.

View Article and Find Full Text PDF

Ionic liquids are gaining high attention due to their extremely unique physiochemical properties and are being utilized in numerous applications in the field of electrochemistry and bio-nanotechnology. The excellent ionic conductivity and the wide electrochemical window open a new avenue in the construction of electrochemical devices. On the other hand, carbon nanomaterials, such as graphene (GR), graphene oxide (GO), carbon dots (CDs), and carbon nanotubes (CNTs), are highly utilized in electrochemical applications.

View Article and Find Full Text PDF

It has been proven that rapid bioinformatics analysis according to patient health profiles, in addition to biomarker detection at a low level, is emerging as essential to design an analytical diagnostics system to manage health intelligently in a personalized manner. Such objectives need an optimized combination of a nano-enabled sensing prototype, artificial intelligence (AI)-supported predictive analysis, and Internet of Medical Things (IoMT)-based bioinformatics analysis. Such a developed system began with a prototype demonstration of efficient diseases diagnostics performance is the future diseases management approach.

View Article and Find Full Text PDF

The importance of early diagnosis of infectious disease has been revealed well by the COVID-19 pandemic. The current methods for testing SARS-CoV-2 mainly utilize biorecognition elements. The process of production of these biorecognition elements is not only tedious, time-consuming but also costly.

View Article and Find Full Text PDF

Advancements in spontaneous microbial desalination technology for sustainable water purification and simultaneous power generation: A review.

J Environ Manage

November 2021

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Industrial Waste Utilization, Nano and Biomaterials, CSIR- Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh, 462026, India. Electronic address: sshiv.singh@ampri

Population growth and rapid urbanization have put a lot of pressure on the already scarce freshwater around the globe. The availability of freshwater is not only limited but it is non-uniform also. Available desalination technologies help mitigate water shortage; however, these techniques are energy-intensive and unsustainable.

View Article and Find Full Text PDF

Abstract: Organ or cell transplantation is medically evaluated for end-stage failure saving or extending the lives of thousands of patients who are suffering from organ failure disorders. The unavailability of adequate organs for transplantation to meet the existing demand is a major challenge in the medical field. This led to day-day-increase in the number of patients on transplant waiting lists as well as in the number of patients dying while on the queue.

View Article and Find Full Text PDF

Uneven codon usage within genes as well as among genomes is a usual phenomenon across organisms. It plays a significant role in the translational efficiency and evolution of a particular gene. EPB41L3 is a tumor suppressor protein-coding gene, and in the present study, the pattern of codon usage was envisaged.

View Article and Find Full Text PDF

Iron nanoparticles decorated hierarchical carbon fiber forest for the magnetic solid-phase extraction of multi-pesticide residues from water samples.

Chemosphere

November 2021

Toxicokinetics Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow, Uttar Pradesh, 226001, India; Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), MG Marg, Lucknow,

This study describes a versatile, robust and fast sample pre-concentration novel method based on chemical vapour deposition grown iron nanoparticles dispersed hierarchical carbon fiber forest (Fe-ACF/CNF) for the determination of multi-pesticide residue in water samples. This method was developed by the implementation of Fe-ACF/CNF to magnetic solid-phase extraction method (MSPE) for the adsorption of twenty-nine pesticides of various classes using gas chromatography equipped with an electron capture detector. Fe-ACF/CNF was grown via tip growth mechanism and Fe-nanoparticles are moved to the tip of CNF.

View Article and Find Full Text PDF

High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as a model case study.

J Mater Chem B

June 2021

Microfluidics & MEMS Centre, CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

Despite significant accomplishments in developing efficient rapid sensing systems and nano-therapeutics of higher efficacy, the recent coronavirus disease (COVID-19) pandemic is not under control successfully because the severe acute respiratory syndrome virus (SARS-CoV-2, original and mutated) transmits easily from human to -human and causes life-threatening respiratory disorders. Thus, it has become crucial to avoid this transmission through precautions and keep premises hygienic using high-performance anti-viral nanomaterials to trap and eradicate SARS-CoV-2. Such an antiviral nano-system has successfully demonstrated useful significant contribution in COVID-19 pandemic/endemic management effectively.

View Article and Find Full Text PDF

Burn wounds are susceptible to microbial invasion from both resident and exogenous bacteria, which becomes a critical public health issue and causes substantial economic burden. There is a perceived demand to produce new antimicrobial wound dressings that hinder bacterial colonization while accelerating the healing process and hence would provide an improved standard of care for patients. Since ancient times, herbal extracts from medicinally important plants have extensively been used for treating burn injuries.

View Article and Find Full Text PDF

Coronavirus disease (COVID-19) is an emerging and highly infectious disease making global public health concern and socio-economic burden. It is caused due to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). It has the tendency to spread rapidly through person-to-person.

View Article and Find Full Text PDF

A facile and single-step nickel oxide-dispersed in situ grown 3-D graphitic forest engrained carbon foam (NiO-CNF-CF)-based electrode was fabricated for high-performance microbial fuel cells (MFCs). The metal oxide, graphitic contents, biocompatibility, stability and large surface area available in the material for biofilm formation rendered the prepared electrode competent for wastewater treatment and bioenergy (0.79 V and 1.

View Article and Find Full Text PDF

Efficient and rapid detection of viruses plays an extremely important role in disease prevention, diagnosis, and environmental monitoring. Early screening of viral infection among the population has the potential to combat the spread of infection. However, the traditional methods of virus detection being used currently, such as plate culturing and quantitative RT-PCR, give promising results, but they are time-consuming and require expert analysis and costly equipment and reagents; therefore, they are not affordable by people in low socio-economic groups in developing countries.

View Article and Find Full Text PDF

Breast cancer is the most commonly occurring cancer among women which leads to thousands of deaths worldwide. The chances of survival are more if the breast cancer is diagnosed at early stage. At present, mammography, magnetic resonance imaging, ultrasound and tissue biopsies are the main diagnostic techniques available for the detection of breast cancer.

View Article and Find Full Text PDF

Detection of adulteration in pure honey utilizing Ag-graphene oxide coated fiber optic SPR probes.

Food Chem

December 2020

Department of Physics, Central University of Rajasthan, NH-8 Bandarsindri, Ajmer 305817, Rajasthan, India. Electronic address:

Fiber optic surface plasmon resonance (SPR) sensor utilizing silver (Ag) and Ag-graphene oxide (GO) is designed and developed for the detection of adulteration of glucose and fructose in pure honey. The concentration range of the two adulterants in pure honey is varied from 4% to 20% with a step change of 4%. The experiments were performed with two different fiber optic probes viz.

View Article and Find Full Text PDF

Effect of Al addition and space holder content on microstructure and mechanical properties of Ti2Co alloys foams for bone scaffold application.

Mater Sci Eng C Mater Biol Appl

April 2020

AcSIR AMPRI (Academy of Scientific & Innovative Research - Advanced Materials and Processes Research Institute), Bhopal 462026, India; CSIR Advanced Materials and Processes Research Institute, Bhopal 462026, India. Electronic address:

Ti2Co alloy (with and without Al) foam of varying densities were prepared through space holder technique, in which space holder varied from 40 to 70 vol% and Al-concentration varied from 0 to 6 wt% with an enhancement of 2 wt%. The prepared foam samples were analysed in terms of microstructure, phase analysis and mechanical properties. The sizes of pores in the foams come to be almost similar to that of space holder.

View Article and Find Full Text PDF

Herein, we present the growth of pristine vertically aligned flexible two dimensional (2D) pure ZnO nanodiscs a simple seed assisted solution route and their use in the fabrication of a piezoelectric nanogenerator. The preferred growth direction and morphology of wurtzite ZnO nanodiscs were investigated using X-ray diffraction and field emission scanning electron microscopy (FESEM) studies. A flexible piezoelectric nanogenerator was fabricated using the vertically aligned ZnO nanodiscs as the active piezoelectric material and a carbon nanotube-polydimethylsiloxane (CNT : PDMS) film as the top electrode.

View Article and Find Full Text PDF

In the present work, an electrochemical immunosensor has been fabricated for the detection of amyloid beta peptide (βA) based on a gold nanoparticle/nickel ferrite decorated graphene oxide-chitosan nanocomposite (Au/NiFeO@GO-Ch) modified glassy carbon electrode (GCE) as an effective sensing platform. βA has been analyzed as a potential biomarker for its application in Alzheimer's disease monitoring. The combination of highly conducting Au and NiFeO nanoparticles on two-dimensional GO nanosheets provides an excellent platform for sensitive and selective sensing applications.

View Article and Find Full Text PDF

The biomedical demand of the nanomaterials is continuously increasing due to their wide range of applications in the field. However, before the implementation of these nanomaterials, toxicity assessment is essential for its safe usage. In the present study, the toxicity of carbon nanoparticles (CNPs) was investigated which was derived from candle soot and compared with commercially available multi-walled carbon nanotubes (CNTs) by using Drosophila melanogaster as a model system.

View Article and Find Full Text PDF

Ti4wt%Al alloy foams of various porosities were prepared using milled and unmilled powders through space holder technique. Crystallographic and morphological change in milled powder compared to the unmilled one were also examined. Space holder content was varied to get foams of different porosities.

View Article and Find Full Text PDF

Electrochemical detection of monosodium glutamate in foodstuffs based on Au@MoS/chitosan modified glassy carbon electrode.

Food Chem

March 2019

Analytical Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (CSIR-NEIST), Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research, CSIR-NEIST Campus, Jorhat 785006, Assam, India; Microfluidics & MEMS Centre, CSIR-Advanced

We report an amperometric immunosensor for the detection of monosodium glutamate (MSG) using a glassy carbon electrode modified with gold nanoparticle decorated on a molybdenum disulfide/chitosan (Au@MoS/Ch) nanocomposite. In the present detection technique, Au@MoS/Ch was used as a conductive matrix and anti-glutamate antibody was immobilized on to its surface via carbodiimide coupling method. Chemical and morphological attributes of the various components of the immunosensor were confirmed by UV-vis spectroscopy, SEM, TEM and XRD analysis.

View Article and Find Full Text PDF

The present study deals with the estimation of the anti-HIV activity (log1/C) of a large set of 107 HEPT analogues using molecular descriptors which are responsible for the anti-HIV activity. The study has been undertaken by three techniques MLR, ANN, and SVM. The MLR model fits the train set with R (2)=0.

View Article and Find Full Text PDF