75 results match your criteria: "CSIR-Advanced Materials and Processes Research Institute (AMPRI)[Affiliation]"

Hydrogen is a lightweight, small molecule that is highly flammable and causes an explosion when exposed to air by >4%. It is a colorless and odorless gas; hence, its physical examination is challenging. Therefore, a reliable detection tool is highly demanded to avoid the risk associated with their explosion.

View Article and Find Full Text PDF

The meniscus-confined electrochemical 3D printing (MC-E3DP) process has emerged as a novel approach for fabricating sub-micron complex structures through localized electrochemical deposition from salt solutions of desired materials. This study reports, for the first time, the MC-E3DP fabrication of iron oxide (FeO) thin films on indium tin oxide (ITO)-coated glass substrates. The FeO films are characterized using XRD, Raman spectroscopy, and UV-vis pectroscopy, confirming phase purity.

View Article and Find Full Text PDF

Arresting of efflorescence in ceramic tiles developed using caustic alumina industry waste (red mud).

Sci Total Environ

January 2025

CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Bhopal, Madhya Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. Electronic address:

Conversion of caustic red mud (RM, Alumina industry waste) into building materials becoming one of the viable solution for its large scale utilization. The building materials developed using RM often results in efflorescence due to its high alkalinity, which is detrimental for the structural integrity of the buildings. The X-ray shielding tiles developed through ceramic route using the mixtures of RM, BaSO and kaolin clay also suffers from severe NaSO efflorescence when sintered above 1000 °C.

View Article and Find Full Text PDF

Non-invasive ultra-sensitive detection of breast cancer biomarker using cerium nanoparticle functionalized graphene oxide enabled impedimetric aptasensor.

Biosens Bioelectron

January 2025

Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal, 462026, MP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

Epidermal growth factor receptor (EGFR) is a transmembrane protein and a key biomarker implicated in the pathogenesis of breast cancer. Early and precise detection of EGFR is crucial for effective diagnosis, prognosis, and therapeutic intervention. However, conventional EGFR detection techniques, such as biopsy and immunohistochemistry, are often invasive, time-consuming, and limited in sensitivity, highlighting the demand for non-invasive, highly sensitive detection methods.

View Article and Find Full Text PDF

The escalating concern surrounding microplastic (MP) pollution necessitates urgent attention and the development of rapid techniques for quantifying extremely low concentrations. Surface-enhanced Raman spectroscopy (SERS) has emerged as a promising method due to its simplicity, high sensitivity, and rapid quantification capabilities. Herein, the efficacy of gold-silver alloy nanoparticles (3DPAu-Ag) substrates for detecting poly(methyl methacrylate) (PMMA) and polystyrene (PS) MPs is investigated.

View Article and Find Full Text PDF
Article Synopsis
  • A super hydrophobic porous silicon surface is created using a wet chemical process, showing a relationship between pore size and reaction time through electron microscopy.
  • Silver nanoparticles are applied to this porous silicon to create SERS substrates that demonstrate high sensitivity and stability, successfully detecting low concentrations of rhodamine 6G.
  • These substrates are effective for sensing various water pollutants at concentrations below safe limits, indicating their potential as low-cost, long-lasting sensors for environmental conservation.
View Article and Find Full Text PDF

Concomitant achievement of all three performance pillars of a supercapacitor device, namely gravimetric, areal, and volumetric capacitance is a grand challenge. Nevertheless, its fulfilment is indispensable for commercial usage. Although, high compactness is the fundamental requirement to achieve high volumetric performance, it severely affects ion transportation in thick electrodes.

View Article and Find Full Text PDF

To ensure environmental and health safety, relevant pollutants such as pesticides must be screened thoroughly to set their permissible limit. Various approaches have been used to identify pesticides such as capillary electrophoresis, gas and liquid-liquid chromatography, high-performance liquid chromatography, and enzyme-linked immune-absorbent tests. However, these techniques have some drawbacks, including time-consuming difficult steps, expensive bulky equipment, expert personnel, and a lack of selectivity.

View Article and Find Full Text PDF

Miniaturized MXene-based electrochemical biosensors for virus detection.

Bioelectrochemistry

August 2024

Industrial Waste Utilization, Nano and Biomaterials, CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal- 462026, MP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India. Electronic address:

The timely control of infectious diseases can prevent the spread of infections and mitigate the significant socio-economic damage witnessed during recent pandemics. Diagnostic methods play a significant role in detecting highly contagious agents, such as viruses, to prevent further transmission. The emergence of advanced point-of-care techniques offers several advantages over conventional approaches for detecting infectious agents.

View Article and Find Full Text PDF

Electrochemical sensors offer promising prospects for real-time pollutant monitoring. In this study, copper oxide-dispersed graphitic carbon nanofibers (CuO-CNFs) grown via chemical vapour deposition were employed as a robust platform for detecting a variety of environmental pollutants. This array-based sensor adeptly identifies three different classes of analytes, i.

View Article and Find Full Text PDF

More than four years have passed since an inimitable coronavirus disease (COVID-19) pandemic hit the globe in 2019 after an uncontrolled transmission of the severe acute respiratory syndrome (SARS-CoV-2) infection. The occurrence of this highly contagious respiratory infectious disease led to chaos and mortality all over the world. The peak paradigm shift of the researchers was inclined towards the accurate and rapid detection of diseases.

View Article and Find Full Text PDF

Escalating concern over global warming, which is mostly associated with deforestation, has led to the development of new classes of materials that can replace wood and better utilise natural resources. Presently, waste is a significant factor in recycling. In this regard, one of the leading contributors to waste is agricultural waste, which includes dried branches, leaves of trees, plants, and other organic materials.

View Article and Find Full Text PDF

Ammonia, as an essential and economical fuel, is a key intermediate for the production of innumerable nitrogen-based compounds. Such compounds have found vast applications in the agricultural world, biological world (amino acids, proteins, and DNA), and various other chemical transformations. However, unlike other compounds, the decomposition of ammonia is widely recognized as an important step towards a safe and sustainable environment.

View Article and Find Full Text PDF

In this study, we are reporting for the first time the utilization of Solanum tuberosum tuber-driven, starch-mediated, green-hydrothermally synthesized cerium oxide nanoparticles (G-CeO NPs) for the antibacterial activity and photodegradation of cationic (methylene blue, MB) and anionic (methyl orange, MO) dyes separately and in combination, aimed at environmental remediation. The XRD analysis confirms the fluorite structure of G-CeO NPs, displaying an average crystallite size of 9.6 nm.

View Article and Find Full Text PDF

Triboelectric nanogenerators have the ability to harvest low- and mid-frequency vibrational energy from the environment; however, achieving stable performance of the nanogenerator device in high-temperature conditions remains challenging. In this work, a flexible and temperature-stable polyvinyl alcohol (PVA)/layered double hydroxides (LDH) nanocomposite-based triboelectric nanogenerator was developed to harvest unexploited vibrational energy for the first time. Crystalline ZnAl LDH nanosheets grown by a hydrothermal route are used to fabricate the high-performance flexible nanogenerator.

View Article and Find Full Text PDF

The rational construction of free-standing and flexible electrodes for application in electrochemical energy storage devices and next-generation supercapacitors is an emerging research focus. Herein, we prepared a redox-active ferrocene dicarboxylic acid (Fc)-based nickel metal-organic framework (MOF) on electrospun carbon nanofibers (NiFc-MOF@CNFs) an approach. This approach avoided the aggregation of the MOF.

View Article and Find Full Text PDF

The green approach has been employed for the synthesis of various types of nanomaterials including metal nanoparticles, metal oxides, and carbon-based nanomaterials. These processes involve natural sources that contain bioactive compounds that act as reducing, stabilizing, and capping agents for the formation and stabilization of nanomaterials. This study reports the green synthesis of CdS and CdS/rGO nanocomposites using Lactobacillus bacteria.

View Article and Find Full Text PDF

Pancreatic cancer is a devastating disease with a low survival rate and limited treatment options. Graphene quantum dots (GQDs) have recently become popular as a promising platform for cancer diagnosis and treatment due to their exceptional physicochemical properties, such as biocompatibility, stability, and fluorescence. This review discusses the potential of multifunctional GQDs as a platform for receptor targeting, drug delivery, and bioimaging in pancreatic cancer.

View Article and Find Full Text PDF

Herein, we have proposed a straightforward and label-free electrochemical immunosensing strategy supported on a glassy carbon electrode (GCE) modified with a biocompatible and conducting biopolymer functionalized molybdenum disulfide-reduced graphene oxide (CS-MoS/rGO) nanohybrid to investigate the SARS-CoV-2 virus. CS-MoS/rGO nanohybrid-based immunosensor employs recombinant SARS-CoV-2 Spike RBD protein (rSP) that specifically identifies antibodies against the SARS-CoV-2 virus via differential pulse voltammetry (DPV). The antigen-antibody interaction diminishes the current responses of the immunosensor.

View Article and Find Full Text PDF
Article Synopsis
  • The COVID-19 pandemic has led to severe health issues, including post-infection complications that increase mortality rates, particularly affecting organs like the lungs and thyroid.
  • Emerging variants, such as Omicron, pose additional threats, highlighting the need for effective treatment options.
  • Phytochemical-based therapies are gaining attention due to their cost-effectiveness, fewer side effects, and potential benefits in treating both COVID-19 and related inflammatory conditions, especially thyroid dysfunction.
View Article and Find Full Text PDF

Microbial pathogens have threatened the world due to their pathogenicity and ability to spread in communities. The conventional laboratory-based diagnostics of microbes such as bacteria and viruses need bulky expensive experimental instruments and skilled personnel which limits their usage in resource-limited settings. The biosensors-based point-of-care (POC) diagnostics have shown huge potential to detect microbial pathogens in a faster, cost-effective, and user-friendly manner.

View Article and Find Full Text PDF

This study establishes the suitability of cellulosic fibers derived from Canna indica waste biomass for utilization as a reinforcement in natural fiber polymeric composites. The waste biomass was harvested from constructed wetlands engaged in the treatment of municipal wastewater from a gated community. The extracted Canna indica (CI) fibers were studied for their physicochemical, mechanical, structural, crystallographic, and thermal characteristics and proposed as a potential alternative to synthetic fiber.

View Article and Find Full Text PDF

MXene, a new member of 2D material, unites the eminence of hydrophilicity, large surface groups, superb flexibility and excellent conductivity. Because of its prodigious characteristics, MXene has gained much approbation among researchers worldwide. MXene's noteworthy features, such as its electrical conductivity, structural property, magnetic behaviour, etc.

View Article and Find Full Text PDF