80 results match your criteria: "CSIC-University of Zaragoza[Affiliation]"

Tumor-derived extracellular vesicles have emerged as an alternative source of cancer biomarkers in liquid biopsies. Despite their clinical potential, traditional methods for isolation and analysis have hampered their translation into the clinic. The use of nanomaterial-based biosensors can speed up the development of analytical methods for quantifying extracellular vesicles in a specific, highly reproducible, robust, fast and inexpensive way.

View Article and Find Full Text PDF

Electron Microscopy Studies of Local Structural Modulations in Zeolite Crystals.

Angew Chem Int Ed Engl

October 2020

Center for High-Resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.

Zeolites are widely used in catalysis, gas separation, ion exchange, etc. due to their superior physicochemical properties, which are closely related to specific features of their framework structures. Although more than two hundred different framework types have been recognized, it is of great interest to explore from a crystallographic perspective, the atomic positions, surface terminations, pore connectivity and structural defects that deviate from the ideal framework structures, namely local structural modulation.

View Article and Find Full Text PDF

In this work, we perform an in-depth experimental and computational study about the structure-directing effect of two new chiral organic quaternary ammonium dications bearing two N-methyl-prolinol units linked by a xylene spacer in para or meta relative orientation, displaying four enantiopure stereogenic centers in (S) configuration. Synthesis results show that the para-xylene derivative is an efficient structure-directing agent, promoting the crystallization of ZSM-12 (in pure-silica composition), beta zeolite (as pure-silica, or in the presence of Al or Ge), and a mixture of polymorphs C, A and B of zeolite beta (in the presence of Ge). In contrast, the meta-xylene derivative showed a much poorer structure-directing activity, yielding only amorphous materials unless Ge is present in the gel, where beta and polymorph C (together with A and B) zeolites crystallized.

View Article and Find Full Text PDF

The combination of different bioimaging techniques, mainly in the field of oncology, allows circumventing the defects associated with the individual imaging modalities, thus providing a more reliable diagnosis. The development of multimodal endogenous probes that are simultaneously suitable for various imaging modalities, such as magnetic resonance imaging (MRI), X-ray computed tomography (CT) and luminescent imaging (LI) is, therefore, highly recommended. Such probes should operate in the conditions imposed by the newest imaging equipment, such as MRI operating at high magnetic fields and dual-energy CT.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are recognized as hazardous contributors to air pollution, precursors of multiple secondary byproducts, troposphere aerosols, and recognized contributors to respiratory and cancer-related issues in highly populated areas. Moreover, VOCs present in indoor environments represent a challenging issue that need to be addressed due to its increasing presence in nowadays society. Catalytic oxidation by noble metals represents the most effective but costly solution.

View Article and Find Full Text PDF

Photo-Fenton-like Metal-Protein Self-Assemblies as Multifunctional Tumor Theranostic Agent.

Adv Healthc Mater

August 2019

Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road,

Emerging Fenton-like activity of copper ions has inspired great exploration for tumor microenvironment-activated tumor therapy due to the toxic ·OH production for chemodynamic therapy and extra oxygen generation for photodynamic therapy (PDT). Still, the ·OH produced by copper ions is not satisfied even when copper ions are placed in a low pH environment (pH ≈ 5.0).

View Article and Find Full Text PDF

Synthesis of Gold Nanoparticles for Gene Silencing.

Methods Mol Biol

November 2019

Instituto de Ciencia de Materiales de Aragón, CSIC-University of Zaragoza, Zaragoza, Spain.

Over the last decade, the capability of double-stranded RNAs to interfere with gene expression has driven new therapeutic approaches. Since small interfering RNAs (siRNAs, 21-base-pair double-stranded RNA) were shown able to elicit RNA interference (RNAi), efforts were directed toward the development of efficient delivery systems to preserve siRNA bioactivity throughout the delivery route, from administration site to the target cell. Starting from the synthesis of gold nanoparticle, here we describe comprehensive methodologies for functionalization with specific moieties (charged groups, peptides) and chemico-physical characterization.

View Article and Find Full Text PDF

Computable General Equilibrium models are widely used in the literature to analyse the global effects of certain events with economic repercussions. The intensity of these events is usually justified, although somewhat vaguely. Based on the implementation of new technologies to certain production processes, we analyse the economic impacts of a replacement in the energy supply, from classical to renewable sources.

View Article and Find Full Text PDF

We present an efficient and green methodology for the synthesis of glycerol monoethers, starting from glycidol and different alcohols, by means of heterogeneous acid catalysis. A scope of Brønsted and Lewis acid catalysts were applied to the benchmark reaction of glycidol and methanol. The selected catalysts were cationic exchangers, such as Nafion NR50, Dowex 50WX2, Amberlyst 15 and K10-Montmorillonite, both in their protonic form and exchanged with Al(III), Zn(II) and Fe(III).

View Article and Find Full Text PDF

The efficiency of a rotor-stator device for water disinfection based on hydrodynamic cavitation is investigated. Water is infected with E. coli and E.

View Article and Find Full Text PDF

Cytokine induced killer cells-assisted delivery of chlorin e6 mediated self-assembled gold nanoclusters to tumors for imaging and immuno-photodynamic therapy.

Biomaterials

July 2018

Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shan

The cytotoxicity and unique tumor-tropic properties of cytokine-induced killer (CIK) cells render them promising in the field of cancer immunotherapy and delivery systems. Here, we report a novel and facile approach to assemble gold nanoclusters (GNCs) into stable and monodispersed nanoparticles (NPs) using Chlorin e6 (Ce6) molecules. Notably, the fluorescence intensity of the GNCs-Ce6 NPs was about 4.

View Article and Find Full Text PDF

Nanoparticles engineered to bind cellular motors for efficient delivery.

J Nanobiotechnology

March 2018

Dpt. Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña km 7.5, 28040, Madrid, Spain.

Background: Dynein is a cytoskeletal molecular motor protein that transports cellular cargoes along microtubules. Biomimetic synthetic peptides designed to bind dynein have been shown to acquire dynamic properties such as cell accumulation and active intra- and inter-cellular motion through cell-to-cell contacts and projections to distant cells. On the basis of these properties dynein-binding peptides could be used to functionalize nanoparticles for drug delivery applications.

View Article and Find Full Text PDF

To improve the selectivity of magnetic nanoparticles for tumor treatment by hyperthermia, FeO nanoparticles have been functionalized with a peptide of the type arginine-glycine-aspartate (RGD) following a "click" chemistry approach. The RGD peptide was linked onto the previously coated nanoparticles in order to target αβ integrin receptors over-expressed in angiogenic cancer cells. Different coatings have been analyzed to enhance the biocompatibility of magnetic nanoparticles.

View Article and Find Full Text PDF

The protein corona formed on the surface of a nanoparticle in a biological medium determines its behavior in vivo. Herein, iron oxide nanoparticles containing the same core and shell, but bearing two different surface coatings, either glucose or poly(ethylene glycol), were evaluated. The nanoparticles' protein adsorption, in vitro degradation, and in vivo biodistribution and biotransformation over four months were investigated.

View Article and Find Full Text PDF

pH-responsive gold nanoclusters-based nanoprobes for lung cancer targeted near-infrared fluorescence imaging and chemo-photodynamic therapy.

Acta Biomater

March 2018

Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shan

Unlabelled: Nanoparticle-based drug delivery systems have drawn a great deal of attention for their opportunities to improve cancer treatments over intrinsic limits of conventional cancer therapies. Herein, we developed the polypeptide-modified gold nanoclusters (GNCs)-based nanoprobes for tumor-targeted near-infrared fluorescence imaging and chemo-photodynamic therapy. The nanoprobes comprise of tetra-functional components: i) polyethylene glycol (PEG) shell for long blood circulation and better biocompatibility; ii) MMP2 polypeptide (CPLGVRGRGDS) for tumor targeting; iii) cis-aconitic anhydride-modified doxorubicin (CAD) for pH-sensitive drug release; iv) photosensitizer chlorin e6 (Ce6) for photodynamic therapy and fluorescence imaging.

View Article and Find Full Text PDF

In this work we report the preparation of mixtures of several alkyl glyceryl ethers, as hydrogen bond donor compounds, with two ammonium salts, choline chloride and N,N,N-triethyl-2,3-dihydroxypropan-1-aminium chloride. The stability of the mixtures at different molar ratios and temperatures has been evaluated in order to determine the formation of low melting mixtures. Liquid and stable mixtures have been characterized and their physico-chemical properties such as density, viscosity, refractive index, conductivity and surface tension have been measured in the temperature range of 293.

View Article and Find Full Text PDF

Multifunctional Eu-doped NaGd(MoO) nanoparticles functionalized with poly(l-lysine) for optical and MRI imaging.

Dalton Trans

October 2016

Instituto de Ciencia de Materiales de Sevilla, CSIC, Américo Vespucio 49, 41092, Isla de la Cartuja, Sevilla, Spain.

A method for the synthesis of non-aggregated and highly uniform Eu doped NaGd(MoO) nanoparticles is reported for the first time. The obtained particles present tetragonal structure, ellipsoidal shape and their size can be varied by adjusting the experimental synthesis parameters. These nanoparticles, which were coated with citrate anions and functionalised with PLL, have also been developed in order to improve their colloidal stability in physiological medium (2-(N-morpholino)ethanesulfonic acid, MES).

View Article and Find Full Text PDF

Bifunctional and highly uniform Ln:BaGdF5 (Ln = Eu(3+) and Nd(3+)) nanoparticles have been successfully synthesized using a solvothermal method consisting of the aging at 120 °C of a glycerol solution containing the corresponding Lanthanide acetylacetonates and butylmethylimidazolium tetrafluoroborate. The absence of any surfactant in the synthesis process rendered hydrophilic nanospheres (with tunable diameter from 45 nm 85 nm, depending on the cations concentration of the starting solution) which are suitable for bioapplications. The particles are bifunctional because they showed both optical and magnetic properties due to the presence of the optically active lanthanides (Eu(3+) in the visible and Nd(3+) in the NIR regions of the electromagnetic spectrum) and the paramagnetic gadolinium ion, respectively.

View Article and Find Full Text PDF

Metabolites involved in cellular communication among human cumulus-oocyte-complex and sperm during in vitro fertilization.

Reprod Biol Endocrinol

November 2015

Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Campus Mare Nostrum, Espinardo 30100 and IMIB, Murcia, Spain.

Background: Fertilization is a key physiological process for the preservation of the species. Consequently, different mechanisms affecting the sperm and the oocyte have been developed to ensure a successful fertilization. Thus, sperm acrosome reaction is necessary for the egg coat penetration and sperm-oolema fusion.

View Article and Find Full Text PDF

Modelling the experimental electron density: only the synergy of various approaches can tackle the new challenges.

IUCrJ

July 2015

Cristallographie, Résonance Magnetique et Modélisations, CRM2, UMR 7036, Institut Jean Barriol, Université de Lorraine, Vandoeuvre-les-Nancy, BP239, F54506, France.

Article Synopsis
  • Electron density is crucial for understanding chemical bonding and properties in molecules and materials, influenced by the charge and spin of electrons.
  • Electron distributions can be measured in both momentum and position space through techniques like Bragg and Compton diffraction, using X-rays and polarized neutrons.
  • Recent advancements in measurement accuracy and technique integration necessitate improved modeling to interpret the resulting data effectively.
View Article and Find Full Text PDF

Here we have investigated the effect of enshrouding polymer-coated nanoparticles (NPs) with polyethylene glycol (PEG) on the adsorption of proteins and uptake by cultured cells. PEG was covalently linked to the polymer surface to the maximal grafting density achievable under our experimental conditions. Changes in the effective hydrodynamic radius of the NPs upon adsorption of human serum albumin (HSA) and fibrinogen (FIB) were measured in situ using fluorescence correlation spectroscopy.

View Article and Find Full Text PDF

Phase selective gelation (PSG) of organic phases from their non-miscible mixtures with water was achieved using tetrapeptides bearing a side-chain azobenzene moiety. The presence of the chromophore allowed PSG at the same concentration as the minimum gelation concentration (MGC) necessary to obtain the gels in pure organic phases. Remarkably, the presence of the water phase during PSG did not impact the thermal, mechanical, and morphological properties of the corresponding organogels.

View Article and Find Full Text PDF

The title hydrated ionic complex, [Ni(CH3COO)(C12H12N2)2]ClO4·H2O or [Ni(ac)(5,5'-dmbpy)2]ClO4·H2O (where 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and ac is acetate), (1), was isolated as violet crystals from the aqueous ethanolic nickel acetate-5,5'-dmbpy-KClO4 system. Within the complex cation, the Ni(II) atom is hexacoordinated by two chelating 5,5'-dmbpy ligands and one chelating ac ligand. The mean Ni-N and Ni-O bond lengths are 2.

View Article and Find Full Text PDF

Neodymium aluminate coatings have been prepared in-situ by the laser zone melting (LZM) method, using a CO2 SLAB-type laser emitting at 10.6 µm. Polycrystalline Al2O3 commercial plates have been used as substrates, and coatings were prepared from the corresponding mixtures of powdered neodymium and aluminium oxides as starting materials.

View Article and Find Full Text PDF

Synthesis, characterization and crystal structure of the new pentahydrate of bis(2,2'-bipyridine-κ(2)N,N')(oxalato-κ(2)O(1),O(2))nickel(II).

Acta Crystallogr C Struct Chem

May 2014

Instituto de Ciencia de Materiales de Aragón (ICMA), Departamento de Química Inorgánica, CSIC-University of Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain.

The reaction of NiCl2, K2C2O4·H2O and 2,2'-bipyridine (bpy) in water-ethanol solution at 281 K yields light-purple needles of the new pentahydrate of bis(2,2'-bipyridine)oxalatonickel(II), [Ni(C2O4)(C10H8N2)2]·5H2O or [Ni(ox)(bpy)2]·5H2O, while at room temperature, deep-pink prisms of the previously reported tetrahydrate [Ni(ox)(bpy)2]·4H2O [Román, Luque, Guzmán-Miralles & Beitia (1995), Polyhedron, 14, 2863-2869] were gathered. The asymmetric unit in the crystal structure of the new pentahydrate incorporates the discrete molecular complex [Ni(ox)(bpy)2] and five solvent water molecules. Within the complex molecule, all three ligands are bonded as chelates.

View Article and Find Full Text PDF