Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Clinical and biomedical research in low-resource settings often faces substantial challenges due to the need for high-quality data with sufficient sample sizes to construct effective models. These constraints hinder robust model training and prompt researchers to seek methods for leveraging existing knowledge from related studies to support new research efforts. Transfer learning (TL), a machine learning technique, emerges as a powerful solution by utilizing knowledge from pretrained models to enhance the performance of new models, offering promise across various healthcare domains. Despite its conceptual origins in the 1990s, the application of TL in medical research has remained limited, especially beyond image analysis. This review aims to analyze TL applications, highlight overlooked techniques, and suggest improvements for future healthcare research. Following the PRISMA-ScR guidelines, we conducted a search for published articles that employed TL with structured clinical or biomedical data by searching the SCOPUS, MEDLINE, Web of Science, Embase, and CINAHL databases. We screened 5,080 papers, with 86 meeting the inclusion criteria. Among these, only 2% (2 of 86) utilized external studies, and 5% (4 of 86) addressed scenarios involving multi-site collaborations with privacy constraints. To achieve actionable TL with structured medical data while addressing regional disparities, inequality, and privacy constraints in healthcare research, we advocate for the careful identification of appropriate source data and models, the selection of suitable TL frameworks, and the validation of TL models with proper baselines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408193PMC
http://dx.doi.org/10.34133/hds.0321DOI Listing

Publication Analysis

Top Keywords

transfer learning
8
clinical biomedical
8
privacy constraints
8
data
5
models
5
bridging data
4
data gaps
4
healthcare
4
gaps healthcare
4
healthcare scoping
4

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF