Contribution of metabolism-independent glucose sensing to metabolic homeostasis.

Trends Endocrinol Metab

Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40506, USA; Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY 40506, USA. Electronic address:

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glucose sensing and signaling are central to cellular metabolic machinery for the regulation of metabolic homeostasis. Glucose sensing has been almost always assumed to be coupled with glucose metabolism; however, recent findings have unraveled metabolism-independent sensing mechanisms. Here, we discuss whether glucose transporters (GLUTs) and sodium-glucose co-transporters (SGLTs) may also function as glucose sensors independent of their roles in transporting glucose. Moreover, we review the emerging roles of G protein-coupled receptors (GPCRs) in sensing glucose and, consequently, initiating its signaling pathways in a cell-specific manner. Altogether, this review offers insights into the newly identified glucose sensing mechanisms and highlights the therapeutic potential of targeting the downstream glucose signaling pathways for more efficient treatment of diabetes, obesity, and their complications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tem.2025.08.008DOI Listing

Publication Analysis

Top Keywords

glucose sensing
16
glucose
10
metabolic homeostasis
8
homeostasis glucose
8
sensing mechanisms
8
signaling pathways
8
sensing
6
contribution metabolism-independent
4
metabolism-independent glucose
4
sensing metabolic
4

Similar Publications

Contribution of metabolism-independent glucose sensing to metabolic homeostasis.

Trends Endocrinol Metab

September 2025

Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40506, USA; Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY 40506, USA. Electronic address:

Glucose sensing and signaling are central to cellular metabolic machinery for the regulation of metabolic homeostasis. Glucose sensing has been almost always assumed to be coupled with glucose metabolism; however, recent findings have unraveled metabolism-independent sensing mechanisms. Here, we discuss whether glucose transporters (GLUTs) and sodium-glucose co-transporters (SGLTs) may also function as glucose sensors independent of their roles in transporting glucose.

View Article and Find Full Text PDF

A smart textile fabric-based optical nano-biosensor for hydrogen peroxide and glucose monitoring.

Spectrochim Acta A Mol Biomol Spectrosc

September 2025

Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad (CUI), Lahore Campus, 54000, Pakistan. Electronic address:

The incorporation of nanomaterials into smart flexible interfaces is a developing requirement for real-time diagnostics applications. In this work, we report a novel optical fabric-based sensor for the analysis of glucose and hydrogen peroxide (HO), addressing critical needs of healthcare, industrial safety, and environmental analysis. In contrast to traditional rigid substrates, we utilized cotton fabric as a porous and flexible sensing platform, immobilizing cerium oxide nanoparticles (CeO₂-NPs) using hydrogel.

View Article and Find Full Text PDF

The long-term optical performance and stability of single-walled carbon nanotubes (SWCNTs) functionalized with single-stranded DNA are critical for their application in near-infrared (NIR) fluorescence biological sensing and imaging. However, the aggregation of such DNA-SWCNTs during storage presents a significant challenge. Here, we explored the use of lyophilization combined with various cryoprotectants to enhance the long-term stability and reconstitution of DNA-SWCNTs at room temperature.

View Article and Find Full Text PDF

Redox compartmentalization drives functional heterogeneity of mature insulin secretory vesicles in pancreatic β-cells.

Redox Biol

August 2025

iHuman Institute, ShanghaiTech University, Shanghai, 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China. Electronic address:

Pancreatic β-cell function requires precise regulation of insulin secretory vesicles (ISVs), yet the redox heterogeneity within mature ISVs remains poorly defined. Here, we implement a novel oxidation-sensing system using NPY-fused DsRed1-E5 (Timer) targeted to mature ISVs in INS-1E and human Endoc-βH5 β-cell models. Leveraging Timer's oxidative color transition from green (Low-oxidative) to yellow-red (High-oxidative), supported by independent measurements using the established redox sensor Grx1-roGFP2, we resolve distinct ISV subpopulations.

View Article and Find Full Text PDF

Oral administration of l-lysine potently promotes GLP-1 secretion and lowers glycemic response in rats.

Biosci Biotechnol Biochem

September 2025

Laboratory of Nutritional Biochemistry, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.

Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone that suppresses postprandial glycemia and appetite. GLP-1 secretion is promoted by various nutrients; however, studies on the effects of orally administered amino acids on GLP-1 secretion are limited. This study investigated the acute effects of l-lysine (Lys) on GLP-1 secretion in vivo and explored the underlying mechanisms.

View Article and Find Full Text PDF