Oral administration of l-lysine potently promotes GLP-1 secretion and lowers glycemic response in rats.

Biosci Biotechnol Biochem

Laboratory of Nutritional Biochemistry, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glucagon-like peptide-1 (GLP-1) is a gastrointestinal hormone that suppresses postprandial glycemia and appetite. GLP-1 secretion is promoted by various nutrients; however, studies on the effects of orally administered amino acids on GLP-1 secretion are limited. This study investigated the acute effects of l-lysine (Lys) on GLP-1 secretion in vivo and explored the underlying mechanisms. In male Sprague-Dawley rats, oral administration Lys, but not l-Alanine (Ala), elevated plasma GLP-1 concentrations, with comparable to or higher potency compared to other amino acids known to stimulate GLP-1 secretion. Duodenal administration of CaSR antagonist attenuated Lys-induced GLP-1 secretion. Oral co-administration of Lys and calcium potently promoted GLP-1 secretion and lowered glycemia under an oral glucose tolerance test. These findings demonstrate that Lys potently induces GLP-1 secretion in vivo, and the combination of Lys and calcium has translational potential as potent GLP-1 releasing strategy for the management of blood glucose levels.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bbb/zbaf124DOI Listing

Publication Analysis

Top Keywords

glp-1 secretion
32
glp-1
11
oral administration
8
secretion
8
amino acids
8
secretion vivo
8
lys calcium
8
lys
5
oral
4
administration l-lysine
4

Similar Publications

Overweight and obesity represent common chronic metabolic disorders in the general population, and observed trends describe a substantial growth in the prevalence of weight excess also among individuals with type 1 diabetes (T1D), the so-called 'lean phenotype' of diabetes. The sharp rise of weight excess and obesity-related cardio-nephron-metabolic burdens observed in T2D is expected to produce similar consequences in T1D, leading to the urgent need to endorse therapeutic protocols as in most parts of the World no adjunctive treatments are approved for T1D, making weight excess management challenging in these individuals. The notable results shown by newer glucagon-like peptide 1 receptor agonists (GLP-1RAs) and emerging dual agonists, especially while managing cardio-metabolic burdens, in T2D have encouraged fervent anecdotal and non-anecdotal research also in T1D, indicating that non-insulin injective agents can be effective and safe.

View Article and Find Full Text PDF

Established and Emerging Therapies for Cardiovascular-Kidney-Metabolic Syndrome: Harnessing the Benefits of SGLT-2 Inhibitors, GLP-1 Receptor Agonists, and Beyond.

Heart Lung Circ

September 2025

Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia; Department of Cardiology, Central Adelaide Local Health Network, Adelaide, SA,

Cardiovascular-kidney-metabolic (CKM) syndrome is a term that is increasingly used to describe interconnected conditions that lead to poor health outcomes, including cardiovascular disease, chronic kidney disease, type 2 diabetes, and obesity. Historically, there have been very few targeted pharmacotherapies available that have changed cardiovascular outcomes for people with CKM syndromes; however, over the past decade, new pharmacologic options have rapidly expanded, with strong evidence for cardiovascular and kidney protective benefits in CKM conditions. Of note, sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists have emerged as key therapeutic options and are now widely guideline-endorsed.

View Article and Find Full Text PDF

Exendin-4 Prevents oxLDL-Induced upregulation of TREM2 and attenuates foam cell formation and inflammation in Macrophages.

Biochem Pharmacol

September 2025

Guizhou Medical University, Guiyang 550004 Guizhou, PR China; Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004 Guizhou, PR China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, G

Atherosclerosis (AS), a chronic inflammatory disease and a leading cause of cardiovascular morbidity and mortality. Macrophage-mediated lipid uptake and inflammation are central to plaque formation. TREM2, an immunoreceptor expressed in macrophages, has been reported to regulate lipid metabolism and inflammation, yet its role in atherosclerosis remains controversial.

View Article and Find Full Text PDF

Increased Cholesterol Interactions in the Active Conformational State of the Glucagon-Like Peptide-1 Receptor.

Biophys J

September 2025

CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India. Electronic address:

The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that plays an important role in metabolic regulation, and consequently is a target for type 2 diabetes and obesity therapeutics. Although cholesterol has been reported to be implicated in receptor activation, its interactions with the receptor during the activation cycle have not been probed. Using coarse-grained molecular dynamics simulations, we have characterized the cholesterol interactions with GLP-1R in four conformational states: the inactive, partially active, GLP-1-bound active, and exenatide-bound active conformational states.

View Article and Find Full Text PDF

Diabetes mellitus is a common and serious metabolic disease globally, characterized by increased blood glucose levels. The major pathogenesis is the functional impairment of insulin-producing beta cells in the pancreas and the lack of insulin secretion. Although both type 1 and type 2 diabetes develop through distinct pathological mechanisms, they lead to the destruction and/or dysfunction of beta cells, resulting in inadequate beta cell mass to maintain normal blood glucose levels.

View Article and Find Full Text PDF