98%
921
2 minutes
20
The first radical addition to mesoionic heterocycles, enabling direct functionalization of sydnones with perfluoroalkyl groups with retention of the mesoionic structure, is described. The fluorinated sydnones were subsequently involved in the energy-transfer-mediated cycloaddition with silyl enol ethers. This approach provides efficient access to medicinally relevant perfluoroalkylated pyrazole derivatives with complete regiocontrol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.5c03398 | DOI Listing |
Chem Biodivers
September 2025
Instituto De Química, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil.
Mezilaurus duckei, a Brazilian endemic tree species found exclusively in the Amazon Rainforest, is primarily exploited for timber in construction. Due to its endangered status, this study aimed to investigate the chemical profile and biological properties of the ethanolic extract and its phases derived from M. duckei leaves.
View Article and Find Full Text PDFJ Org Chem
September 2025
Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
A novel electrochemical/Fe dual-catalyzed perfluoroalkylation-thiolization of alkenes under mild conditions has been developed. This protocol utilizes commercially available reagents, cheap electrodes, and simple equipment. Diverse polyfunctionalized perfluoroalkyl-substituted derivatives were successfully obtained in a direct and efficient way with a broad substrate scope and excellent functional group tolerance.
View Article and Find Full Text PDFAcc Chem Res
September 2025
Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.
ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, and Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China.
Despite the widespread utility of transition metal-catalyzed cross-couplings in organic synthesis, the coupling of unactivated alkyl electrophiles remains challenging due to sluggish oxidative addition and competing side reactions. Here, we describe a general and practical copper-catalyzed radical deoxyalkynylation of α-unfunctionalized alcohols through a synergistic combination of Barton-McCombie deoxygenation and copper-catalyzed radical cross-coupling. Key to the success of this method lies in not only the development of rigid anionic multiple N,N,N-ligand to exert remarkable selectivity of highly reactive unactivated alkyl radicals, but also the selection of one suitable oxidant to suppress Glaser homocoupling and other side products.
View Article and Find Full Text PDFChemistry
September 2025
National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, China.
We report a glycosyl radical-based, 1,2-trans-selective synthesis of C-aryl glycosides of 2-deoxy-2-amino-sugars from glycals via photoredox PCET/Ni dual catalysis. Mechanistic studies indicate that glycosyl radical formation involves the generation of an N-radical through a proton-coupled electron transfer (PCET) process, followed by its addition to the glycal. This protocol features: a) the use of an inexpensive organic photosensitizer and readily available glycals and aryl bromides; b) good functional group tolerance for both aryl bromides and glycal substrates; c) excellent diastereoselectivity, with exclusive formation of the 1,2-trans C-glycosides in all cases.
View Article and Find Full Text PDF