98%
921
2 minutes
20
For rocky planets, the presence of a solid inner core has notable implications on the composition and thermal evolution of the core and on the magnetic history of the planet. On Mars, geophysical observations have confirmed that the core is at least partially liquid, but it is unknown whether any part of the core is solid. Here we present an analysis of seismic data acquired by the InSight mission, demonstrating that Mars has a solid inner core. We identify two seismic phases, the deep core-transiting phase, PKKP, and the inner core boundary reflecting phase, PKiKP, indicative of the inner core. Our inversions constrain the radius of the Martian inner core to about 613 ± 67 km, with a compressional velocity jump of around 30% across the inner core boundary, supported by additional inner-core-related seismic phases. These properties imply a concentration of distinct light elements in the inner core, segregated from the outer core through core crystallization. This finding provides an anchor point for understanding the thermal and chemical state of Mars. Moreover, the relationship between inner core formation and the Martian magnetic field evolution could provide insights into dynamo generation across planetary bodies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12408336 | PMC |
http://dx.doi.org/10.1038/s41586-025-09361-9 | DOI Listing |
Int J Biol Macromol
September 2025
College of Materials Science and Engineering, Zhejiang Key Laboratory of Plastic Modification and Processing Technology, Zhejiang University of Technology, Hangzhou, 310014, PR China.
The flammability and poor ultraviolet (UV) aging resistance of polylactic acid (PLA) limit its applications outdoors and in fields requiring flame retardancy. To address these limitations, this study designed ammonium polyphosphate (APP) as the core, the biopolymer chitosan (CS) as the inner shell, and lignin (LK) as the outer shell. CS and LK are deposited on the surface of APP via electrostatic interaction in the aqueous phase to prepare a core-shell structure flame retardant APP@CS@LK with anti-UV aging properties.
View Article and Find Full Text PDFBioorg Chem
September 2025
Department of Medicinal Chemistry, Shandong Key Laboratory of Druggability Optimization and Evaluation for Lead Compounds, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, PR China. Electronic address:
A series of novel 3,3-dimethyl-2,3,4,9-tetrahydro-1H-carbazole derivatives were rationally designed, synthesized and evaluated for their biological activity as AcrB inhibitors. The compounds were assessed for their antibiotic potentiating effects, followed by evaluation of Nile Red efflux inhibition, and off-target effects including activity on the outer and inner bacterial membranes. Ten compounds potentiated antibiotic activity at sub-inhibitory concentrations, reducing the minimum inhibitory concentrations (MICs) of at least one of the tested antibiotics by at least 8-fold, with three derivatives (7c, 11g, and 11i) achieving 32-fold MIC reductions at 128 μg/mL.
View Article and Find Full Text PDFMitosis in spp., the causative agent of malaria, is fundamentally different from model eukaryotes, proceeding via a bipartite microtubule organising centre (MTOC) and lacking canonical regulators such as Polo and Bub1 kinases. During schizogony, asynchronous nuclear replication produces a multinucleate schizont, while rapid male gametogony generates an octaploid nucleus before gamete formation.
View Article and Find Full Text PDFJ Appl Polym Sci
August 2025
Department of Biomedical Engineering, University of Houston.
Recent advances in neural regeneration have demonstrated the importance of incorporating proteins into polymeric capsules to provide both topographical and biochemical cues to cells. Coaxial electrospinning has emerged as a versatile technique for embedding delicate bioactive agents within core-shell nanofibers, enabling controlled and sustained drug release. In this study, we employed a design-of-experiment approach to systematically investigate how controllable parameters in coaxial electrospinning influence the diameter and size distribution of aligned poly (ethylene oxide-poly(l-lactide-co-glycolide) nanofibers loaded with nerve growth factor (NGF).
View Article and Find Full Text PDFNat Commun
September 2025
Department of Earth Sciences, University College London, London, UK.
The composition of Earth's core is a fundamental property of the Earth's deep interior, defining its present structure and long term thermal and magnetic evolution. However, the composition of the core is not well understood, with several combinations of light elements being able to satisfy the traditional constraints from cosmochemistry, core formation and seismology. The classic view of inner core formation does not include the necessity for liquids to be supercooled to below their melting point before freezing.
View Article and Find Full Text PDF