Drought modifies the impacts of soil nutrient heterogeneity on native and alien plant growth in the absence of competition.

AoB Plants

Institute of Wetland Ecology and Clone Ecology / Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation / Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, Taizhou University, Taizhou 318000, Zhejiang, China.

Published: October 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil nutrient heterogeneity has generally been shown to benefit alien plants more than native ones. However, whether drought, an important aspect of climate change, alters these effects remains an open question. We used a greenhouse experiment with two alien and two native herbaceous plants. Plants were grown either alone or in a mixture (one alien plant and one native plant) in homogeneous and heterogeneous soils, with or without drought. We found that shoot mass of the native plant and the alien plant were 27.4% and 76.6% lower in heterogeneous soils than homogenous soils, respectively, indicating a negative effect of soil nutrient heterogeneity. However, these negative effects were eliminated when the plants were grown alone in drought conditions. In contrast, soil nutrient heterogeneity, drought, and competition had little effect on the growth of the native plant and the alien plant . These results suggest that plant species differ in their growth responses to complex environmental changes. These results may have implications for understanding plant invasion outcomes in heterogeneous environments under global climate changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401082PMC
http://dx.doi.org/10.1093/aobpla/plaf042DOI Listing

Publication Analysis

Top Keywords

soil nutrient
16
nutrient heterogeneity
16
alien plant
16
native plant
12
plant
9
plants grown
8
heterogeneous soils
8
plant alien
8
native
6
alien
6

Similar Publications

Legumes form symbioses with nitrogen-fixing bacteria, well studied metabolically but less so in terms of respiration. Symbiotic nitrogen fixation demands high respiratory ATP and carbon skeletons, linking nitrogen assimilation and both NADH- and ATP-dependent process to mitochondrial respiration. The plant mitochondrial electron transport chain contains two terminal oxidases that differentially fractionate against O, providing estimations in vivo of the energy efficiency of respiration.

View Article and Find Full Text PDF

Nanoparticles (NPs) have emerged as transformative agents in agriculture, offering promising applications in nanofertilizers, nanopesticides, and soil amendments. However, significant knowledge gaps persist regarding the long-term impact of engineered NPs on soil health, including microbial networks and biogeochemical fluxes. Despite their potential to enhance nutrient use efficiency, promote crop resilience, and support sustainable farming, the interactions of NPs with soil matrices, especially their transformations, persistence, and ecological implications, are not fully explored.

View Article and Find Full Text PDF

Biochar-based slow-release fertilizers (BSRFs) offer a promising alternative to conventional fertilizers by enhancing nutrient retention and reducing environmental loss. This study aimed to develop a sustainable and cost-effective BSRF through the co-pyrolysis of wheat straw (WS), bentonite and nutrient solution containing KHPO and KNO. WS and bentonite were blended in 50:50 and 70:30 ratios with fixed doses of nutrients, then co-pyrolyzed (at 350 °C and 500 °C) to produce BSRFs.

View Article and Find Full Text PDF

Optimizing multi-system coupling to mitigate carbon emissions in agrifood systems at county level in China.

J Environ Manage

September 2025

State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China. Electronic address:

The growing demand for food has led to overuse of land, exacerbating the environmental sustainability of agrifood systems. Insufficient coordination and coupling within agrifood systems (soil-crop-animal-food consumption) reduce material cycle efficiency and limit the system's carbon reduction potential. Given the lack of global research on the impact of system coupling on carbon reduction, the value of regional practice cases is particularly evident.

View Article and Find Full Text PDF

Addressing the issues of slow decomposition and low nutrient release efficiency associated with traditional straw returning, this study innovatively applied ultrasound-assisted centrifugal separation technology to prepare submicron/nano-straw particles and systematically conducted a multi-scale investigation from microscopic to macroscopic levels. The core finding reveals that when the particle size reaches the 1 μm threshold, ultrasonic cavitation vigorously disrupts the straw structure, leading to efficient lignin removal (77.45 %) and a significant reduction in cellulose crystallinity, thereby fundamentally enhancing the degradation rate.

View Article and Find Full Text PDF